Yıl: 2023 Cilt: 23 Sayı: 1 Sayfa Aralığı: 129 - 136 Metin Dili: İngilizce DOI: 10.5152/electrica.2022.22072 İndeks Tarihi: 23-05-2023

Effects of Memristor on Oscillator and Regulator Circuits

Öz:
Many recent nanoscale studies have paved the way for obtaining suitable models for describing the nonlinear dynamics of memristive elements. Memristor, which is one of these elements and expresses the relationship between magnetic flux and electric charge, has had a wide application area since it has been modeled. In this study, oscillator and regulator circuits are designed as memristive, and these circuits are investigated with important parameters such as power consumption, operating speed, and regulation. Considering the Wien bridge oscillator and voltage regulator circuits as the working environment, the performance comparison is made by using the memristor circuit model instead of the standard resistor. The results obtained are interesting because they show the advantages of using memristor in both oscillator and regulator circuits in terms of power consumption, speed, and regulation properties.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. F. Rahma, and S. Muneam, Memristive Nonlinear Electronic Circuits: Dynamics, Synchronization and Applications. Berlin: Springer, 2019.
  • 2. S. Vaidyanathan, and C. Volos, Advances in Memristors, Memristive Devices and Systems. Berlin: Springer, 2017.
  • 3. F. L. Aguirre, J. Suñé, and E. Miranda, “SPICE implementation of the dynamic memdiode model for bipolar resistive switching devices,” Micromachines, vol.13, no. 2, p. 330, 2022. [CrossRef]
  • 4. B. Mouttet, “Memristive systems analysis of 3-terminal devices,” 17th IEEE International Conference on Electronics, Circuits and Systems. Atina: IEEE Publications, 2010, pp. 930–933.
  • 5. L. Danial et al., “Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing,” Nat. Electron., vol. 2, no. 12, pp. 596–605, 2019. [CrossRef]
  • 6. T. Ibrayev, I. Fedorova, A. K. Maan, and A. P. James, “Memristive operational amplifiers,” Procedia Comput. Sci., vol. 41, pp. 114–119, 2014. [CrossRef]
  • 7. A. James, Memristors: Circuits and Applications of Memristor Devices. London, United Kingdom: Intechopen, 2020.
  • 8. J. Suñé, Memristors for Neuromorphic Circuits and Artificial Intelligence Applications. Basel, Switzerland: Mdpi AG, 2020.
  • 9. L. O. Chua, R. Tetzlaff, and A. Slavova, Memristor Computing Systems. Berlin: Springer, 2022.
  • 10. F. Corinto, M. Forti, and L. O. Chua, Nonlinear Circuits and Systems with Memristors: Nonlinear Dynamics and Analogue Computing via the Flux- Charge Analysis Method. Berlin: Springer, 2021.
  • 11. S. Gursul, Investigation of the Effects of Different Memristor Emulators on Electronic Circuits [MSc Thesis]. Malatya, Turkey: Inonu University, 2020.
  • 12. P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse coding with memristor networks,” Nat. Nanotechnol., vol. 12, no. 8, pp. 784–789, 2017. [CrossRef]
  • 13. L. O. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit Theor., vol.18, no. 5, pp. 507–519, 1971. [CrossRef]
  • 14. G. Oster, “A note on memristors,” in IEEE Trans. Circuits Syst., vol. 21, no. 1, pp. 152–152, 1974. [CrossRef]
  • 15. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no.7191, pp. 80–83, 2008. [CrossRef]
  • 16. M. D. Pickett et al., “Switching dynamics in titanium dioxide memristive devices,” J. Appl. Phys., vol. 106, no. 7, p. 074508, 2009. [CrossRef]
  • 17. T. Prodromakis, K. Michelakis, and C. Toumazou, “Fabrication and electrical characteristics of memristors with TiO2/TiO2+X active layers,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems. Paris: ISCAS, 2010, pp. 1520–1522.
  • 18. M. E. Sahin, H. Guler, ve S. E. Hamamci, “Design and realization of a hyperchaotic memristive system for communication system on FPGA,” Traitement Signal, vol. 37, no. 6, pp. 939–953, 2020. [CrossRef]
  • 19. M. E. Sahin, A. S. Demirkol, H. Guler, ve S. E. Hamamci, “Design of a hyperchaotic memristive circuit based on Wien Bridge oscillator,” Comput. Electr. Eng., vol. 88, 2020. [CrossRef]
  • 20. V. Mladenov, “Analysis of memory matrices with HfO2 memristors in a PSpice environment,” Electronics, vol. 8, no. 4, p. 383, 2019. [CrossRef]
  • 21. V. Mladenov, “A modified tantalum oxide memristor model for neural networks with memristor-based synapses,” 9th International Conference on Modern Circuits and Systems Technologies, Bremen, Germany: MOCAST, 2020.
  • 22. V. Mladenov, and S. Kirilov, “Analysis of the mutual inductive and capacitive connections and tolerances of memristors parameters of a memristor memory matrix,” Eur. Conference on Circuit Theory and Design. Dresden, Germany: IEEE, pp. 1–4, 2013.
  • 23. H. Bao, Z. Hua, H. Li, M. Chen, and B. Bao, “Discrete memristor hyperchaotic maps,” IEEE Trans. Circuits Syst. I, vol. 68, no. 11, pp. 4534–4544, 2021. [CrossRef]
  • 24. H. Bao, Z. Hua, H. Li, M. Chen, and B. Bao, “Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets,” IEEE Trans. Ind. Inform., vol. 18, no. 8, pp. 5297–5306, 2022. [CrossRef]
  • 25. Z. G. Cam, and H. Sedef, “A new floating memristance simulator circuit based on second generation current conveyor,” J. Circuits Syst. Comput., vol. 26, no. 2, p. 1750029, 2017. [CrossRef]
  • 26. Ş. Yener, and H. Kuntman, “A new CMOS based memristor implementation. ” IEEE International Conference on Applied Electronics. Pilsen, 2012, pp. 345–348.
  • 27. B. Bao, J. Yu, F. Hu, and Z. Liu, “Generalized memristor consisting of diode bridge with first order parallel RC filter,” Int. J. Bifurcation Chaos, vol. 24, no. 11, p. 1450143, 2014. [CrossRef]
  • 28. H. Bao, A. Hu, W. Liu, and B. Bao, “Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 2, pp. 502–511, 2020. [CrossRef]
  • 29. İ. Parlar, and N. Almali, “Comparison of the output parameters of the Memrıstor-based op-amp model and the traditional op-amp model,” J. Electron. Test. Theor. Appl., pp. 1–18, 2022.
  • 30. S. Gursul, and S. E. Hamamci, “Comparison of different memristor emulators on low-pass filter circuit,” 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT. Ankara, pp. 1–4, 2019.
  • 31. S. Gursul, and S. E. Hamamci, “Performance comparison of various memristor emulators on a phase shifting oscillator circuit,” 7th International Conference on Electrical and Electronics Engineering, ICEEE. Antalya, pp. 23–27, 2020.
  • 32. S. Gursul, and S. E. Hamamci, “Investigation of power consumption effect of various memristor emulators on a logic gate,” Eur. J. Technic, pp. 200–210, 2021. [CrossRef]
  • 33. A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor model comparison,” IEEE Circuits Syst. Mag., vol. 13, no. 2, pp. 89–105, 2010. [CrossRef]
  • 34. S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-based material implication (IMPLY) logic: Design principles and methodologies,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, 2014. [CrossRef]
  • 35. L. O. Chua, and S. M. Kang, “Memristive devices and systems,” Proc. IEEE, vol. 64, no. 2, pp. 209–223, 1976. [CrossRef]
  • 36. R. S. Williams, “How we found the missing memristor,” IEEE Spec., vol. 45, no. 12, pp. 28–35, 2008. [CrossRef]
  • 37. A. G. Alharbi, and M. H. Chowdhury, Memristor Emulator Circuits. Cham, Switzerland: Springer, 2021.
  • 38. K. K. Yavuz, Memristor Based Voltage Regulators [MSc Thesis]. Tekirdağ: Tekirdağ Namık Kemal University, 2019.
APA Gürsul S, HAMAMCI S (2023). Effects of Memristor on Oscillator and Regulator Circuits. , 129 - 136. 10.5152/electrica.2022.22072
Chicago Gürsul Sevgi,HAMAMCI SERDAR ETHEM Effects of Memristor on Oscillator and Regulator Circuits. (2023): 129 - 136. 10.5152/electrica.2022.22072
MLA Gürsul Sevgi,HAMAMCI SERDAR ETHEM Effects of Memristor on Oscillator and Regulator Circuits. , 2023, ss.129 - 136. 10.5152/electrica.2022.22072
AMA Gürsul S,HAMAMCI S Effects of Memristor on Oscillator and Regulator Circuits. . 2023; 129 - 136. 10.5152/electrica.2022.22072
Vancouver Gürsul S,HAMAMCI S Effects of Memristor on Oscillator and Regulator Circuits. . 2023; 129 - 136. 10.5152/electrica.2022.22072
IEEE Gürsul S,HAMAMCI S "Effects of Memristor on Oscillator and Regulator Circuits." , ss.129 - 136, 2023. 10.5152/electrica.2022.22072
ISNAD Gürsul, Sevgi - HAMAMCI, SERDAR ETHEM. "Effects of Memristor on Oscillator and Regulator Circuits". (2023), 129-136. https://doi.org/10.5152/electrica.2022.22072
APA Gürsul S, HAMAMCI S (2023). Effects of Memristor on Oscillator and Regulator Circuits. Electrica, 23(1), 129 - 136. 10.5152/electrica.2022.22072
Chicago Gürsul Sevgi,HAMAMCI SERDAR ETHEM Effects of Memristor on Oscillator and Regulator Circuits. Electrica 23, no.1 (2023): 129 - 136. 10.5152/electrica.2022.22072
MLA Gürsul Sevgi,HAMAMCI SERDAR ETHEM Effects of Memristor on Oscillator and Regulator Circuits. Electrica, vol.23, no.1, 2023, ss.129 - 136. 10.5152/electrica.2022.22072
AMA Gürsul S,HAMAMCI S Effects of Memristor on Oscillator and Regulator Circuits. Electrica. 2023; 23(1): 129 - 136. 10.5152/electrica.2022.22072
Vancouver Gürsul S,HAMAMCI S Effects of Memristor on Oscillator and Regulator Circuits. Electrica. 2023; 23(1): 129 - 136. 10.5152/electrica.2022.22072
IEEE Gürsul S,HAMAMCI S "Effects of Memristor on Oscillator and Regulator Circuits." Electrica, 23, ss.129 - 136, 2023. 10.5152/electrica.2022.22072
ISNAD Gürsul, Sevgi - HAMAMCI, SERDAR ETHEM. "Effects of Memristor on Oscillator and Regulator Circuits". Electrica 23/1 (2023), 129-136. https://doi.org/10.5152/electrica.2022.22072