Yıl: 2022 Cilt: 39 Sayı: 6 Sayfa Aralığı: 422 - 428 Metin Dili: İngilizce DOI: 10.4274/balkanmedj.galenos.2022.2022-5-90 İndeks Tarihi: 23-05-2023

Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia

Öz:
Background: RASD1 encodes Dexamethasone-induced Ras-related protein 1 (Dexras1), a protein with a critical role in signal transduction in neurons. There is a strong suspicion that dysfunction of Dexras1 might contribute to the pathogenesis of neuropsychiatric diseases. Related to its functions in intracellular signaling pathways, Dexras1 has a potential role in the etiology of schizophrenia because of its close interaction with NOS1, NOS1AP, and NMDAR, which have previously been associated with schizophrenia. Aims: To investigate the association of RASD1 variants with schizophrenia in a selected cohort from Turkey. Study Design: A case-control study. Methods: We performed targeted sequencing for the two exons, single intron, and untranslated regions of RASD1 gene in 200 individuals with schizophrenia and 100 healthy controls of Turkish origin. Results: Two rare variants, RASD1 (NM_016084.5): c.722A>T and c*31G>A were identified in individuals with schizophrenia but not in any controls. The c.722A>T was found in a single individual with schizophrenia and is a missense heterozygous variant in the second exon of RASD1, which is extremely rare in GnomAD. The other variant, c*31G>A, which was found in another individual from this schizophrenia cohort, has not been reported previously. Seven previously identified common single nucleotide polymorphisms were also detected; however, they were not significantly associated with schizophrenia in this study cohort. Conclusion: Our findings suggest that rare variants of RASD1 might be contributing to the etiopathogenesis of schizophrenia. Further studies are needed to elucidate the underlying mechanism of this association.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067. [CrossRef]
  • 2. Murray CJ, Lopez AD. The global burden of disease. 1996. Genève, OMS. 1996:201- 246. [CrossRef]
  • 3. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013. [CrossRef]
  • 4. Cardno AG, Marshall EJ, Coid B, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry. 1999;56:162-168. [CrossRef]
  • 5. Butler MG, McGuire AB, Masoud H, Manzardo AM. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation. Am J Med Genet B Neuropsychiatr Genet. 2016;171:181-202. [CrossRef]
  • 6. Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455:232-236. [CrossRef]
  • 7. Gratten J. Rare variants are common in schizophrenia. Nat Neurosci. 2016;19:1426- 1428. [CrossRef]
  • 8. Genovese G, Fromer M, Stahl EA, et al. Increased burden of ultra- rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433- 1441. [CrossRef]
  • 9. Zhou J, Ma C, Wang K, et al. Identification of rare and common variants in BNIP3L: a schizophrenia susceptibility gene. Hum Genomics. 2020;14:16. [CrossRef]
  • 10. Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38:920-926. [CrossRef]
  • 11. Balu DT. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol. 2016;76:351-382. [CrossRef]
  • 12. Cheng HYM, Obrietan K. Dexras1: shaping the responsiveness of the circadian clock. Semin Cell Dev Biol. 2006;17:345-351. [CrossRef]
  • 13. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Dexras1: AG protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron. 2000;28:183-193. [CrossRef]
  • 14. Chen Y, Khan RS, Cwanger A, et al. Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J Neurosci. 2013;33:3582-3587. [CrossRef]
  • 15. White RS, Bhattacharya AK, Chen Y, et al. Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain. 2016;9:38. [CrossRef]
  • 16. Weber H, Klamer D, Freudenberg F, et al. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta analysis. Eur Neuropsychopharmacol. 2014;24:65-85. [CrossRef]
  • 17. Brzustowicz LM. NOS1AP in schizophrenia. Curr Psychiatry Rep. 2008;10:158-163. [CrossRef]
  • 18. Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol. 2016;116:57-67. [CrossRef]
  • 19. European Network of National Networks studying Gene-Environment Interactions in Schizophrenia (EU-GEI); van Os J, Rutten BP, et al. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull. 2014;40:729-736. [CrossRef]
  • 20. Dreos R, Ambrosini G, Périer RC, Bucher P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res. 2015;43:92-96. [CrossRef]
  • 21. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3--new capabilities and interfaces. Nucleic Acid Res. 2012;40:115. [CrossRef]
  • 22. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434-443. [CrossRef]
  • 23. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361-362. [CrossRef]
  • 24. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1-9. [CrossRef]
  • 25. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310-315. [CrossRef]
  • 26. Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928-1929. [CrossRef]
  • 27. Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22:417-428. [CrossRef]
  • 28. Hilker R, Helenius D, Fagerlund B, et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiatry. 2018;83:492-498. [CrossRef]
  • 29. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421-427. [CrossRef]
  • 30. Lee SH, DeCandia TR, Ripke S, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet. 2012;44:247- 250. [CrossRef]
  • 31. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13:135-145. [CrossRef]
  • 32. Rhoades R, Jackson F, Teng S. Discovery of rare variants implicated in schizophrenia using next-generation sequencing. J Transl Genet Genom. 2019;3:1-20. [CrossRef]
  • 33. Singh T, Walters JT, Johnstone M, et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet. 2017;49:1167-1173. [CrossRef]
  • 34. Kim HJ, Cha JY, Seok JW, et al. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis. Sci Rep. 2016;6:28648. [CrossRef]
  • 35. Cha JY, Kim HJ, Yu JH, et al. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:20575- 20580. [CrossRef]
  • 36. Cheah JH, Kim SF, Hester LD, et al. NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron. 2006;51:431- 440. [CrossRef]
  • 37. Muñoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Núñez MT. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem. 2011;286:13382-13392. [CrossRef]
  • 38. Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet. 2017;51:171-194. [CrossRef]
  • 39. Yang J, Guo X, Zhu L, et al. Rs7219 regulates the expression of GRB2 by affecting miR-1288-mediated inhibition and contributes to the risk of schizophrenia in the Chinese Han population. Cell Mol Neurobio. 2019;39:137-147. [CrossRef]
  • 40. Wu S, Zhang R, Nie F, et al. MicroRNA-137 inhibits EFNB2 expression affected by a genetic variant and is expressed aberrantly in peripheral blood of schizophrenia patients. EBioMedicine. 2016;12:133-142. [CrossRef]
  • 41. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:155-162. [CrossRef]
  • 42. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PloS One. 2018;13:e0206239. [CrossRef]
  • 43. Huang HY, Lin YCD, Li J, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48:148- 154. [CrossRef]
APA Durmaz C, KARABULUT H, SAKA M, SUCULARLI C, Gumus-Akay G, Atbasoglu E, ILGIN RUHİ H (2022). Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. , 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
Chicago Durmaz Ceren Damla,KARABULUT HALIL GÜRHAN,SAKA MERAM CAN,SUCULARLI Ceren,Gumus-Akay Guvem,Atbasoglu E. Cem,ILGIN RUHİ Hatice Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. (2022): 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
MLA Durmaz Ceren Damla,KARABULUT HALIL GÜRHAN,SAKA MERAM CAN,SUCULARLI Ceren,Gumus-Akay Guvem,Atbasoglu E. Cem,ILGIN RUHİ Hatice Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. , 2022, ss.422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
AMA Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. . 2022; 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
Vancouver Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. . 2022; 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
IEEE Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H "Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia." , ss.422 - 428, 2022. 10.4274/balkanmedj.galenos.2022.2022-5-90
ISNAD Durmaz, Ceren Damla vd. "Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia". (2022), 422-428. https://doi.org/10.4274/balkanmedj.galenos.2022.2022-5-90
APA Durmaz C, KARABULUT H, SAKA M, SUCULARLI C, Gumus-Akay G, Atbasoglu E, ILGIN RUHİ H (2022). Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal, 39(6), 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
Chicago Durmaz Ceren Damla,KARABULUT HALIL GÜRHAN,SAKA MERAM CAN,SUCULARLI Ceren,Gumus-Akay Guvem,Atbasoglu E. Cem,ILGIN RUHİ Hatice Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal 39, no.6 (2022): 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
MLA Durmaz Ceren Damla,KARABULUT HALIL GÜRHAN,SAKA MERAM CAN,SUCULARLI Ceren,Gumus-Akay Guvem,Atbasoglu E. Cem,ILGIN RUHİ Hatice Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal, vol.39, no.6, 2022, ss.422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
AMA Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal. 2022; 39(6): 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
Vancouver Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia. Balkan Medical Journal. 2022; 39(6): 422 - 428. 10.4274/balkanmedj.galenos.2022.2022-5-90
IEEE Durmaz C,KARABULUT H,SAKA M,SUCULARLI C,Gumus-Akay G,Atbasoglu E,ILGIN RUHİ H "Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia." Balkan Medical Journal, 39, ss.422 - 428, 2022. 10.4274/balkanmedj.galenos.2022.2022-5-90
ISNAD Durmaz, Ceren Damla vd. "Genetic Analysis of RASD1 as a Candidate Gene for Schizophrenia". Balkan Medical Journal 39/6 (2022), 422-428. https://doi.org/10.4274/balkanmedj.galenos.2022.2022-5-90