Yıl: 2023 Cilt: 9 Sayı: 1 Sayfa Aralığı: 15 - 27 Metin Dili: İngilizce DOI: 10.28979/jarnas.1140573 İndeks Tarihi: 24-05-2023

Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion

Öz:
Abstract –Kombucha, a fermented beverage, is popular for its prophylactic and therapeutic properties. Kombucha is a traditionally black tea infusion fermented with a symbiotic bacteria and yeast consortium (SCOBY) under aerobic conditions for 7-21 days. However, the beneficial properties of kombucha vary according to the substrate kind, fermentation conditions, and SCOBY consortium. The present study has screened the physicochemical, bioactive, antimicrobial, and sensory properties of beverages produced by fermenting black, green, rosehip, and licorice tea infusions with kombucha starter culture for 21 days. Tea infusions before and after fermentation; pH value, titratable acidity (TA), pellicle weight, color values (L*, a*, b*, ΔE), total phenolic content (TPC), antioxidant capacity against DPPH (2,2-diphenyl-1- picrylhydrazil) radicals, and antimicrobial activity was measured. Antimicrobial activity is applied to various foodborne pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and C. albicans with based disc diffusion method and spectrophotometric technique. In this study, tea type statistically affected all parameters except pH in kombucha beverages (p<0.05). The highest TPC and antioxidant activity were determined in the green tea kombucha sample. All kombucha beverages, especially those prepared by fermentation of licorice and green tea infusions, showed the highest antimicrobial potential against E. coli and S. aureus, respectively. Consequently, it is vital to prefer kombucha fermented with SCOBY instead of consuming beverages prepared with various plants' infusions to increase many beneficial properties and provide additional benefits.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • AOAC. (2002). Official Methods of Analysis of AOAC International, 17th ed. Methods 976.05, 923.03, 962.09, 920.39. USA: Association of Official Analytical Chemists. Retrieved from: https://doi.org/10.1093/jaoac/85.5.1187
  • AOAC. (1975). Association of Official Analytical Chemists. Official Methods of analysis. In Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. Retrieved from: https://doi.org/10.1016/S0076- 6879(99)99017-1
  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3, 7. Retrieved from: https://doi.org/10.3389/FSUFS.2019.00007/BIBTEX
  • Battikh, H., Chaieb, K., Bakhrouf, A., & Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231–236. Retrieved from: https://doi.org/10.1111/j.1745-4514.2011.00629.x
  • Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology, 60, 328–340. Retrieved from: https://doi.org/10.1016/J.FCT.2013.07.051
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. Retrieved from: https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cardoso, R. R., Neto, R. O., dos Santos D’Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. Retrieved from: https://doi.org/10.1016/J.FOODRES.2019.108782
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. Retrieved from: https://doi.org/10.1016/J.IJFOODMICRO.2015.12.015
  • Chiu, C. T., Lai, C. H., Huang, Y. H., Yang, C. H., & Lin, J. N. (2021). Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics, 10(4), 450. Retrieved from: https://doi.org/10.3390/antibiotics10040450
  • Chrubasik, C., Roufogalis, B. D., Müller-Ladner, U., & Chrubasik, S. (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytotherapy Research, 22(6), 725–733. Retrieved from: https://doi.org/10.1002/PTR.2400
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507. Retrieved from: https://doi.org/10.1016/J.FOODCHEM.2005.05.080
  • Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1192–1206. Retrieved from: https://doi.org/10.1111/1541-4337.12109
  • Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5). Retrieved from: https://doi.org/10.1093/FEMSEC/FIX048
  • Cottet, C., Ramirez-Tapias, Y. A., Delgado, J. F., la Osa, O. De, Salvay, A. G., & Peltzer, M. A. (2020). Biobased Materials from Microbial Biomass and Its Derivatives. Materials 2020, Vol. 13, Page 1263, 13(6), 1263. Retrieved from: https://doi.org/10.3390/MA13061263
  • De Roos, J., & De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115–119. Retrieved from: https://doi.org/10.1016/j.copbio.2017.08.007
  • Demir, N., Yildiz, O., Alpaslan, M., & Hayaloglu, A. A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Science and Technology, 57(1), 126–133. Retrieved from: https://doi.org/10.1016/j.lwt.2013.12.038
  • Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: A review. Food Research International, 33(6), 409–421. Retrieved from: https://doi.org/10.1016/S0963-9969(00)00067-3
  • Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials–The review. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 19, pp. 3185–3194). Taylor & Francis. Retrieved from: https://doi.org/10.1080/10408398.2019.1679714
  • Fujii, S., Morinaga, O., Uto, T., Nomura, S., & Shoyama, Y. (2014). Development of a monoclonal antibodybased immunochemical assay for liquiritin and its application to the quality control of licorice products. Journal of Agricultural and Food Chemistry, 62(15), 3377–3383. Retrieved from: https://doi.org/10.1021/JF404731Z/ASSET/IMAGES/JF404731Z.SOCIAL.JPEG_V03
  • Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2018). Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, Vol. 11, Page 1, 11(1), 1. Retrieved from: https://doi.org/10.3390/NU11010001
  • Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT - Food Science and Technology, 31(3), 291– 296. Retrieved from: https://doi.org/10.1006/fstl.1997.0354
  • Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, Vol. 9, Page 447, 9(5), 447. Retrieved from: https://doi.org/10.3390/ANTIOX9050447
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. Retrieved from: https://doi.org/10.1016/J.FOODCHEM.2006.05.032
  • Jayabalan, Rasu, Chen, P.-N., Hsieh, Y.-S., Prabhakaran, K., Pitchai, P., Marimuthu, S., Thangaraj, P., Swaminathan, K., & Eok Yun, S. (2011). Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells-Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian Journal of Biotechnology, 10, 75–82. Retrieved from: http://nopr.niscair.res.in/bitstream/123456789/10955/1/IJBT%2010(1)%2075-82.pdf
  • Jayabalan, Rasu, Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. In Comprehensive Reviews in Food Science and Food Safety (Vol. 13, Issue 4, pp. 538–550). John Wiley & Sons, Ltd. Retrieved from: https://doi.org/10.1111/1541-4337.12073
  • Kamal, D. A. M., Salamt, N., Zaid, S. S. M., & Mokhtar, M. H. (2021). Beneficial effects of green tea catechins on female reproductive disorders: A review. Molecules, 26(9), 2675. Retrieved from: https://doi.org/10.3390/molecules26092675
  • Khan, N., & Mukhtar, H. (2019). Tea polyphenols in promotion of human health. In Nutrients (Vol. 11, Issue 1, p. 39). Multidisciplinary Digital Publishing Institute. Retrieved from: https://doi.org/10.3390/nu11010039
  • Kim, J., & Adhikari, K. (2020). Current trends in kombucha: Marketing perspectives and the need for improved sensory research. In Beverages (Vol. 6, Issue 1, pp. 1–19). Multidisciplinary Digital Publishing Institute. Retrieved from: https://doi.org/10.3390/beverages6010015
  • Liu, C. H., Hsu, W. H., Lee, F. L., & Liao, C. C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407–415. Retrieved from: https://doi.org/10.1006/FMIC.1996.0047
  • Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. Retrieved from: https://doi.org/10.1016/j.fm.2013.09.003
  • Massoud, R., Jafari-Dastjerdeh, R., Naghavi, N., & Khosravi-Darani, K. (2022). All aspects of antioxidant properties of kombucha drink. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 4018– 4027). Retrieved from: https://doi.org/10.33263/BRIAC123.40184027
  • Maughan, C., Tansawat, R., Cornforth, D., Ward, R., & Martini, S. (2012). Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle. Meat Science, 90(1), 116–121. Retrieved from: https://doi.org/10.1016/J.MEATSCI.2011.06.006
  • May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C., & Aktipis, A. (2019). Kombucha: A novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 2019(9), e7565. Retrieved from: https://doi.org/10.7717/peerj.7565
  • Medveckiene, B., Kulaitiene, J., Jariene, E., Vaitkevičiene, N., & Hallman, E. (2020). Carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) cultivated in Lithuania. Applied Sciences (Switzerland), 10(15), 5337. Retrieved from: https://doi.org/10.3390/APP10155337
  • Miranda, B., Lawton, N. M., Tachibana, S. R., Swartz, N. A., & Hall, W. P. (2016). Titration and HPLC Characterization of Kombucha Fermentation: A Laboratory Experiment in Food Analysis. Journal of Chemical Education, 93(10), 1770–1775. Retrieved from: https://doi.org/10.1021/ACS.JCHEMED.6B00329/ASSET/IMAGES/ACS.JCHEMED.6B00329.SOCI AL.JPEG_V03
  • Mukadam, T. A., Punjabi, K., Deshpande, S. D., Vaidya, S. P., & Chowdhary, A. S. (2016). Isolation and Characterization of Bacteria and Yeast from Kombucha Tea. International Journal of Current Microbiology and Applied Sciences, 5(6), 32–41. Retrieved from: https://doi.org/10.20546/ijcmas.2016.506.004
  • Oh, J., Jo, H., Cho, A. R., Kim, S. J., & Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31(2), 403–409. Retrieved from: https://doi.org/10.1016/J.FOODCONT.2012.10.021
  • Poveda-Castillo, G. D. C., Rodrigo, D., Martínez, A., & Pina-Pérez, M. C. (2018). Bioactivity of Fucoidan as an antimicrobial agent in a new functional beverage. Beverages, 4(3), 64. Retrieved from: https://doi.org/10.3390/beverages4030064
  • Ramaswamy, H. S., & Richards, J. F. (1980). A Reflectance Method to Study the Green-Yellow Changes in Fruits and Vegetables. Canadian Institute of Food Science and Technology Journal, 13(3), 107–111. Retrieved from: https://doi.org/10.1016/s0315-5463(80)73346-1
  • Ramírez Tapias, Y. A., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2020). Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. Food and Bioprocess Technology, 13(7), 1166–1180. Retrieved from: https://doi.org/10.1007/S11947-020-02471- 4/FIGURES/8
  • Record, I. R., & Lane, J. M. (2001). Simulated intestinal digestion of green and black teas. Food Chemistry, 73(4), 481–486. Retrieved from: https://doi.org/10.1016/S0308-8146(01)00131-5
  • Rojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C., & Zeppa, G. (2019). Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4), 867. Retrieved from: https://doi.org/10.3390/nu11040867
  • Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9), 3408–3423. Retrieved from: https://doi.org/10.1007/S13197-016-2328-3/FIGURES/4
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. Retrieved from: https://doi.org/10.1016/j.foodchem.2008.08.008
  • Silva, K. A., Uekane, T. M., Miranda, J. F. de, Ruiz, L. F., Motta, J. C. B. da, Silva, C. B., Pitangui, N. de S., Gonzalez, A. G. M., Fernandes, F. F., & Lima, A. R. (2021). Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatalysis and Agricultural Biotechnology, 34, 102032. Retrieved from: https://doi.org/10.1016/J.BCAB.2021.102032
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49–56. Retrieved from: https://doi.org/10.1002/1521- 3846(200102)21:1<49::AID-ABIO49>3.0.CO;2-G
  • Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: A review. International Journal of Food Science and Technology, 46(5), 899–920. Retrieved from: https://doi.org/10.1111/j.1365-2621.2010.02499.x
  • Sun, T. Y., Li, J. S., & Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709–718. Retrieved from: https://doi.org/10.1016/J.JFDA.2015.01.009
  • Tapias, Y. A. R., Di Monte, M. V., Peltzer, M. A., & Salvay, A. G. (2022). Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry, 372, 131346. Retrieved from: https://doi.org/10.1016/j.foodchem.2021.131346
  • Torán-Pereg, P., del Noval, B., Valenzuela, S., Martinez, J., Prado, D., Perisé, R., & Arboleya, J. C. (2021). Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science, 23, 100314. Retrieved from: https://doi.org/10.1016/j.ijgfs.2021.100314
  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T., & Vulić, J. J. (2014). Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa offi cinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technology and Biotechnology, 52(4), 420–429. Retrieved from: https://doi.org/10.17113/FTB.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44– 54. Retrieved from: https://doi.org/10.1016/J.PROCBIO.2019.05.004
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science, 83(3), 580–588. Retrieved from: https://doi.org/10.1111/1750-3841.14068
  • Villarreal-Soto, S. A., Bouajila, J., Pace, M., Leech, J., Cotter, P. D., Souchard, J. P., Taillandier, P., & Beaufort, S. (2020). Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology, 333, 108778. Retrieved from: https://doi.org/10.1016/J.IJFOODMICRO.2020.108778
  • Vitas, J., Vukmanović, S., Čakarević, J., Popović, L., & Malbaša, R. (2020). Kombucha fermentation of six medicinal herbs: Chemical profile and biological activity. Chemical Industry and Chemical Engineering Quarterly, 26(2), 157–170. Retrieved from: https://doi.org/10.2298/CICEQ190708034V
  • Wang, Z., Zhao, X., Zu, Y., Wu, W., Li, Y., Guo, Z., Wang, L., & Wang, L. (2019). Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. Journal of Functional Foods, 57, 190–201. Retrieved from: https://doi.org/10.1016/J.JFF.2019.04.010
  • Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2018). Value-added tea (Camellia sinesis) as a functional food using the Kombucha ‘tea fungus.’ Chiang Mai Journal of Science, 45(1), 136–146. Retrieved from: http://epg.science.cmu.ac.th/ejournal/
  • Yang, F., Chu, T., Zhang, Y., Liu, X., Sun, G., & Chen, Z. (2020). Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry, 324, 126854. Retrieved from: https://doi.org/10.1016/j.foodchem.2020.126854
APA doğan c, doğan n (2023). Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. , 15 - 27. 10.28979/jarnas.1140573
Chicago doğan cemhan,doğan nurcan Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. (2023): 15 - 27. 10.28979/jarnas.1140573
MLA doğan cemhan,doğan nurcan Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. , 2023, ss.15 - 27. 10.28979/jarnas.1140573
AMA doğan c,doğan n Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. . 2023; 15 - 27. 10.28979/jarnas.1140573
Vancouver doğan c,doğan n Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. . 2023; 15 - 27. 10.28979/jarnas.1140573
IEEE doğan c,doğan n "Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion." , ss.15 - 27, 2023. 10.28979/jarnas.1140573
ISNAD doğan, cemhan - doğan, nurcan. "Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion". (2023), 15-27. https://doi.org/10.28979/jarnas.1140573
APA doğan c, doğan n (2023). Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of advanced research in natural and applied sciences (Online), 9(1), 15 - 27. 10.28979/jarnas.1140573
Chicago doğan cemhan,doğan nurcan Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of advanced research in natural and applied sciences (Online) 9, no.1 (2023): 15 - 27. 10.28979/jarnas.1140573
MLA doğan cemhan,doğan nurcan Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of advanced research in natural and applied sciences (Online), vol.9, no.1, 2023, ss.15 - 27. 10.28979/jarnas.1140573
AMA doğan c,doğan n Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of advanced research in natural and applied sciences (Online). 2023; 9(1): 15 - 27. 10.28979/jarnas.1140573
Vancouver doğan c,doğan n Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion. Journal of advanced research in natural and applied sciences (Online). 2023; 9(1): 15 - 27. 10.28979/jarnas.1140573
IEEE doğan c,doğan n "Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion." Journal of advanced research in natural and applied sciences (Online), 9, ss.15 - 27, 2023. 10.28979/jarnas.1140573
ISNAD doğan, cemhan - doğan, nurcan. "Kombucha Beverage: Comparative Study Based on Bioactive Properties and Antimicrobial Potentials of Different Plant Infusion". Journal of advanced research in natural and applied sciences (Online) 9/1 (2023), 15-27. https://doi.org/10.28979/jarnas.1140573