Yıl: 2021 Cilt: 0 Sayı: 27 Sayfa Aralığı: 362 - 369 Metin Dili: Türkçe DOI: 10.31590/ejosat.924905 İndeks Tarihi: 25-05-2023

Ette Lipit Oksidasyonu ve Etkileyen Faktörler

Öz:
Et, lipit ve hem demir açısından zengin bir besin olması nedeniyle lipit oksidasyonuna oldukça duyarlıdır. Et ürünlerinde bozulmanın mikrobiyal olmayan ana nedeni lipit oksidasyonudur. Hayvanın kesilmesinden başlayıp tüketime kadar oksidasyon süreci devam eder. Doymamış yağ asitleri serbest radikal zincir mekanizması yoluyla oksijen ile reaksiyona girerek hidrokarbonlar, aldehitler, ketonlar, alkoller, esterler gibi çok sayıda ikincil bileşik oluşturur. Malondialdehit ikincil lipit oksidasyonunda en çok oluşan aldehitlerdendir. Lipit oksidasyonu içsel ve dışsal birçok faktörden etkilenir. Etin bileşiminde bulunan metaller, prooksidan ve antioksidan enzimler içsel faktörleri oluştururken; depolama, paketleme, işleme teknikleri, pişirme, doğrama, kıyma gibi hazırlama teknikleri dışsal faktörleri oluşturmaktadır. Yağ asidi bileşimi, oksijen mevcudiyeti, pro- ve antioksidanların miktarları, katkı maddelerinin kullanımı (baharatlar, otlar ve tuz), işleme koşulları (ışınlama, pişirme, öğütme, kesme, karıştırma), paketleme (oksijen geçirgen, vakum, modifiye atmosfer ve aktif-paketleme) ve depolama (sıcaklık ve zaman) koşulları, ette lipit oksidasyonunun hızı ve gelişimi için önemlidir. Bu derlemede ette lipit oksidasyonunu etkileyen faktörler incelenmiştir.
Anahtar Kelime: Lipit Oksidasyon Et

Lipid Oxidation in Meat and Affecting Factors

Öz:
Due to its rich lipid and heme iron content, meat is very sensitive to lipid oxidation. The main non-microbial cause of spoilage in meat products is lipid oxidation.The oxidation process continues from the slaughter of the animal to consumption. Unsaturated fatty acids react with oxygen through free radical chain mechanism and form numerous secondary compounds such as hydrocarbons, aldehydes, ketones, alcohols, esters. Malondialdehyde is one of the most common aldehydes in secondary lipid oxidation. Lipid oxidation is affected by many internal and external factors. While metals, prooxidant and antioxidant enzymes constitute internal factors in the composition of meat; Storage, packaging, processing techniques, cooking, and preparation techniques such as chopping and mincing meat are external factors. Fatty acid composition, the presence of oxygen, quantities of pro- and antioxidants, use of additives (spices, herbs and salt), processing conditions (irradiation, cooking, grinding, cutting, mixing), packaging (oxygen permeable, vacuum, modified atmosphere and active- packaging) and storage (temperature and time) conditions are important for the rate and development of lipid oxidation in meat. In this review, factors affecting lipid oxidation in meat were examined.
Anahtar Kelime: Lipid Oxidation Meat

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Aday, M. S. Meyve ve Sebzelerde Aktif Ambalajlama Teknolojisinin Kullanımı. (2021). Avrupa Bilim ve Teknoloji Dergisi, (21), 122-130.
  • Alfaia, C. M., Alves, S. P., Lopes, A. F., Fernandes, M. J., Costa, A. S., Fontes, C. M., ... & Prates, J. A. (2010). Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Science, 84(4), 769-777.
  • Amaral, A. B., Silva, M. V. D., & Lannes, S. C. D. S. (2018). Lipid oxidation in meat: mechanisms and protective factors–a review. Food Science and Technology, 38, 1-15.
  • Angeli, J.P.F.; Garcia, C.C.M.; Sena, F.; Freitas, F.P.; Miyamoto, S.; Medeiros, M.H.G.; Di Mascio, P. Lipid hydroperoxide- induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic. Biol. Med. 2011, 51, 503–515.
  • Barden, L., & Decker, E. A. (2016). Lipid oxidation in low- moisture food: a review. Critical reviews in food science and nutrition, 56(15), 2467-2482.
  • Barriuso, B., Astiasarán, I., & Ansorena, D. (2013). A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European food research and technology, 236(1), 1-15.
  • Broncano, J. M., Petrón, M. J., Parra, V., & Timón, M. L. (2009). Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat science, 83(3), 431-437.
  • Coombs, C. E., Holman, B. W., Ponnampalam, E. N., Morris, S., Friend, M. A., & Hopkins, D. L. (2018). Effects of chilled and frozen storage conditions on the lamb M. longissimus lumborum fatty acid and lipid oxidation parameters. Meat science, 136, 116-122.
  • Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429.
  • Faustman, C., Sun, Q., Mancini, R., & Suman, S. P. (2010). Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat science, 86(1), 86-94.
  • Gheisari, H. R., Møller, J. K., Adamsen, C. E., & Skibsted, L. H. (2010). Sodium chloride or heme protein induced lipid oxidation in raw, minced chicken meat and beef. Czech Journal of Food Sciences, 28(5), 364-375.
  • Gheisari, H. R., & Motamedi, H. (2010). Chloride salt type/ionic strength and refrigeration effects on antioxidant enzymes and lipid oxidation in cattle, camel and chicken meat. Meat science, 86(2), 377-383.
  • Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high- pressure treatments. Trends in Food Science & Technology, 50, 131-143.
  • Huang, X., & Ahn, D. U. (2019). Lipid oxidation and its implications to meat quality and human health. Food science and biotechnology, 28(5), 1275-1285.
  • Jin, G., He, L., Zhang, J., Yu, X., Wang, J., & Huang, F. (2012). Effects of temperature and NaCl percentage on lipid oxidation in pork muscle and exploration of the controlling method using response surface methodology (RSM). Food Chemistry, 131(3), 817-825.
  • Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101.
  • Kong, F., Oliveira, A., Tang, J., Rasco, B., & Crapo, C. (2008). Salt effect on heat-induced physical and chemical changes of salmon fillet (O. gorbuscha). Food Chemistry, 106(3), 957- 966.
  • Králová, M. (2015). The effect of lipid oxidation on the quality of meat and meat products. Maso Int. J. Food Sci. Technol, 2, 125-132.
  • Macho-González, A., Garcimartín, A., López-Oliva, M. E., Bastida, S., Benedí, J., Ros, G., ... & Sánchez-Muniz, F. J. (2020). Can Meat and Meat-Products Induce Oxidative Stress?. Antioxidants, 9(7), 638.
  • Mariutti LRB, Bragagnolo N. (2017). Influence of salt on lipid oxidation in meat and seafood products: a review. Food Res. Int. 94: 90–100
  • McMillin, K. W. (2017). Advancements in meat packaging. Meat science, 132, 153-162.
  • Min, B., & Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products-A review. Food Science and Biotechnology, 14(1), 152-163.
  • Min, B., Nam, K. C., Cordray, J., & Ahn, D. U. (2008). Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science, 73(6), C439-C446.
  • Min, B., Cordray, J. C., & Ahn, D. U. (2010). Effect of NaCl, myoglobin, Fe (II), and Fe (III) on lipid oxidation of raw and cooked chicken breast and beef loin. Journal of agricultural and food chemistry, 58(1), 600-605.
  • Muela, E., Monge, P., Sañudo, C., Campo, M. M., & Beltrán, J. A. (2015). Meat quality of lamb frozen stored up to 21 months: Instrumental analyses on thawed meat during display. Meat science, 102, 35-40.
  • Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2017). Fish in vitro digestion: influence of fish salting on the extent of lipolysis, oxidation, and other reactions. Journal of agricultural and food chemistry, 65(4), 879-891.
  • Orkusz, A., Haraf, G., Okruszek, A., & Wereńska-Sudnik, M. (2017). Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions. Poultry science, 96(3), 731-737.
  • Ortuño, J., Mateo, L., Rodríguez-Estrada, M. T., & Bañón, S. (2020). Effects of sous vide vs grilling methods on lamb meat colour and lipid stability during cooking and heated display. Meat Science, 171, 108287.
  • Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 96–123.
  • Pereira, P. M. D. C. C., & Vicente, A. F. D. R. B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat science, 93(3), 586-592.
  • Purohit, A., Singh, R., Kerr, W., & Mohan, A. (2015). Effects of heme and nonheme iron on meat quality characteristics during retail display and storage. Journal of Food Measurement and Characterization, 9(2), 175-185.
  • Rasinska, E., Rutkowska, J., Czarniecka-Skubina, E., & Tambor, K. (2019). Effects of cooking methods on changes in fatty acids contents, lipid oxidation and volatile compounds of rabbit meat. LWT, 110, 64-70.
  • Ross, C.F.; Smith, D.M. Use of volatiles as indicators of lipid oxidation in muscle foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25.
  • Sakai, T., Shimizu, Y., & Kawahara, S. (2006). Effect of NaCl on the lipid peroxidation-derived aldehyde, 4-hydroxy-2- nonenal, formation in boiled pork. Bioscience, biotechnology, and biochemistry, 70(4), 815-820.
  • Scollan, N. D., Price, E. M., Morgan, S. A., Huws, S. A., & Shingfield, K. J. (2017). Can we improve the nutritional quality of meat?. Proceedings of the Nutrition Society, 76(4), 603-618.
  • Soyer, A., Özalp, B., Dalmış, Ü., & Bilgin, V. (2010). Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food chemistry, 120(4), 1025-1030.
  • Steppeler, C., Haugen, J. E., Rødbotten, R., & Kirkhus, B. (2016). Formation of malondialdehyde, 4-hydroxynonenal, and 4- hydroxyhexenal during in vitro digestion of cooked beef, pork, chicken, and salmon. Journal of agricultural and food chemistry, 64(2), 487-496.
  • Suman, S. P., Mancini, R. A., Joseph, P., Ramanathan, R., Konda, M. K. R., Dady, G., & Yin, S. (2010). Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Science, 86(4), 994-998.
  • Van Hecke, T., Vossen, E., Bussche, J. V., Raes, K., Vanhaecke, L., & De Smet, S. (2014). Fat content and nitrite-curing influence the formation of oxidation products and NOC- specific DNA adducts during in vitro digestion of meat. PLoS One, 9(6), e101122.
  • Van Hecke, T., Wouters, A., Rombouts, C., Izzati, T., Berardo, A., Vossen, E., ... & De Smet, S. (2016b). Reducing compounds equivocally influence oxidation during digestion of a high-fat beef product, which promotes cytotoxicity in colorectal carcinoma cell lines. Journal of agricultural and food chemistry, 64(7), 1600-1609.
  • Van Hecke, T.; Jakobsen, L.M.; Vossen, E.; Guéraud, F.; De Vos, F.; Pierre, F.; Bertram, H.C.; De Smet, S. Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects. Food Funct. 2016, 7, 3760–3771.
  • Vara Ubol, S., & Bowers, J. A. (2001). Effect of α tocopherol, β carotene, and sodium tripolyphosphate on lipid oxidation of refrigerated, cooked ground turkey and ground pork. Journal of food science, 66(5), 662-667.
  • Wang, Z., He, Z., Zhang, D., Li, H., & Wang, Z. (2020). Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures. Meat science, 162, 108042.
  • Weber, J., Bochi, V. C., Ribeiro, C. P., Victório, A. D. M., & Emanuelli, T. (2008). Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106(1), 140-146.
APA Sabuncular G, AKBULUT G, yaman m (2021). Ette Lipit Oksidasyonu ve Etkileyen Faktörler. , 362 - 369. 10.31590/ejosat.924905
Chicago Sabuncular Guleren,AKBULUT GAMZE,yaman mustafa Ette Lipit Oksidasyonu ve Etkileyen Faktörler. (2021): 362 - 369. 10.31590/ejosat.924905
MLA Sabuncular Guleren,AKBULUT GAMZE,yaman mustafa Ette Lipit Oksidasyonu ve Etkileyen Faktörler. , 2021, ss.362 - 369. 10.31590/ejosat.924905
AMA Sabuncular G,AKBULUT G,yaman m Ette Lipit Oksidasyonu ve Etkileyen Faktörler. . 2021; 362 - 369. 10.31590/ejosat.924905
Vancouver Sabuncular G,AKBULUT G,yaman m Ette Lipit Oksidasyonu ve Etkileyen Faktörler. . 2021; 362 - 369. 10.31590/ejosat.924905
IEEE Sabuncular G,AKBULUT G,yaman m "Ette Lipit Oksidasyonu ve Etkileyen Faktörler." , ss.362 - 369, 2021. 10.31590/ejosat.924905
ISNAD Sabuncular, Guleren vd. "Ette Lipit Oksidasyonu ve Etkileyen Faktörler". (2021), 362-369. https://doi.org/10.31590/ejosat.924905
APA Sabuncular G, AKBULUT G, yaman m (2021). Ette Lipit Oksidasyonu ve Etkileyen Faktörler. Avrupa Bilim ve Teknoloji Dergisi, 0(27), 362 - 369. 10.31590/ejosat.924905
Chicago Sabuncular Guleren,AKBULUT GAMZE,yaman mustafa Ette Lipit Oksidasyonu ve Etkileyen Faktörler. Avrupa Bilim ve Teknoloji Dergisi 0, no.27 (2021): 362 - 369. 10.31590/ejosat.924905
MLA Sabuncular Guleren,AKBULUT GAMZE,yaman mustafa Ette Lipit Oksidasyonu ve Etkileyen Faktörler. Avrupa Bilim ve Teknoloji Dergisi, vol.0, no.27, 2021, ss.362 - 369. 10.31590/ejosat.924905
AMA Sabuncular G,AKBULUT G,yaman m Ette Lipit Oksidasyonu ve Etkileyen Faktörler. Avrupa Bilim ve Teknoloji Dergisi. 2021; 0(27): 362 - 369. 10.31590/ejosat.924905
Vancouver Sabuncular G,AKBULUT G,yaman m Ette Lipit Oksidasyonu ve Etkileyen Faktörler. Avrupa Bilim ve Teknoloji Dergisi. 2021; 0(27): 362 - 369. 10.31590/ejosat.924905
IEEE Sabuncular G,AKBULUT G,yaman m "Ette Lipit Oksidasyonu ve Etkileyen Faktörler." Avrupa Bilim ve Teknoloji Dergisi, 0, ss.362 - 369, 2021. 10.31590/ejosat.924905
ISNAD Sabuncular, Guleren vd. "Ette Lipit Oksidasyonu ve Etkileyen Faktörler". Avrupa Bilim ve Teknoloji Dergisi 27 (2021), 362-369. https://doi.org/10.31590/ejosat.924905