Yıl: 2023 Cilt: 23 Sayı: 2 Sayfa Aralığı: 376 - 384 Metin Dili: İngilizce DOI: 10.5152/electr.2022.22147 İndeks Tarihi: 27-05-2023

A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems

Öz:
In this paper, a graphical-based propo rtion al–in tegra l–der ivati ve (PID) tuning technique for time-delay systems is presented. The suggested tuning technique combines the stability boundary locus (SBL) method with the weighted geometrical center (WGC) concept. The plot of the stability region obtained by using real root boundary (RRB), infinite root boundary (IRB), and complex root boundary (CRB) in the parameter plane forms the basis of the proposed method. The tuning steps of the method can be expressed as follows. First, the stability region in (kd ,kp ) -plane is obtained using the SBL for the fixed RRB line. Thus, the stability value range of the kd parameter is determined. Second, using these kd values, the entire set of stability regions in (kp ,ki ) -plane is obtained. These regions constitute a three-dimensional global stability region in (kp ,ki ,kd ) space. Finally, the WGC points of stability regions in each (kp ,ki ) -plane are calculated. The center point having the best time domain performance among these WGC points is determined. This point gives the PID tuning parameters for the proposed method. The simulation results indicate that the presented tuning technique gives simple and reliable results and is useful in the stability analysis and the control of time-delay systems.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. J. Zhu, T. Qi, D. Ma, and J. Chen, Limits of Stability and Stabilization of Time-Delay Systems: A Small-Gain Approach. Berlin: Springer, 2018.
  • 2. J. H. Park, T. H. Lee, Y. Liu, and J. Chen, Dynamic Systems with Time-Delays: Stability and Control. Berlin: Springer, 2019.
  • 3. K. Åström, and T. Hägglund, Advanced PID Control. ISA, 2006.
  • 4. A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules. Imperial College Press, 2009.
  • 5. A. Visioli, “Fuzzy logic based tuning of PID controllers for plants with under-damped response,” IFAC Proc., vol. 33, no. 4, pp. 577–582, 2000. [CrossRef]
  • 6. V. A. Oliveira, L. V. Cossi, M. C. M. Teixeira, and A. M. F. Silva, “Synthesis of PID controllers for a class of time delay systems,” Automatica, vol. 45, no. 7, pp. 1778–1782, 2009. [CrossRef]
  • 7. S. E. Hamamci, “A new PID tuning method based on transient response control,” Balkan J. Electr. Comput. Eng., vol. 2, no. 3, pp. 132–138, 2014. [CrossRef]
  • 8. Q. Wang, C. Lu, and W. Pan, “IMC PID controller tuning for stable and unstable processes with time delay,” Chem. Eng. Res. Des., vol. 105, pp. 120–129, 2016. [CrossRef]
  • 9. Z. Bingul, and O. Karahan, “Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay,” Optimal Control Appl. Methods, vol. 39, no. 4, pp. 1431–1450, 2018. [CrossRef]
  • 10. S. P. Bhattacharyya, A. Datta, and L. H. Keel, Linear Control Theory: Structure, Robustness, and Optimization. Boca Raton, United States of America: CRC press, 2009.
  • 11. N. Tan, and D. P. Atherton, “Design of stabilizing PI and PID controllers,” Int. J. Syst. Sci., vol. 37, no. 8, pp. 543–554, 2006. [CrossRef]
  • 12. J. Ackermann, and D. Kaesbauer, “Design of robust PID controllers,” in European Control. Conference, 522–527, 2001. [CrossRef]
  • 13. N. Bajcinca, “Computation of stable regions in PID parameter space for time-delay systems,” in IFAC Workshop on Time-Delay Systems, 23–28, 2005.
  • 14. S. E. Hamamci, “An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers,” IEEE Trans. Autom. Control, vol. 52, no. 10, pp. 1964–1969, 2007. [CrossRef]
  • 15. S. E. Hamamci, “PI and PID stabilization of neutral and retarded systems with time delay,” Turk. J. Electr. Eng. Comput. Sci., vol. 20(1), pp. 1189–1205, 2012. [CrossRef]
  • 16. S. E. Hamamci, and N. Tan, “Design of PI controllers for achieving time and frequency domain specifications simultaneously,” ISA Trans., vol. 45, no. 4, pp. 529–543, 2006. [CrossRef]
  • 17. M. A. Rahimian, and M. S. Tavazoei, “Application of stability region centroids in robust PI stabilization of a class of second-order systems,” Trans. Inst. Meas. Control, vol. 34, no. 4, pp. 487–498, 2012. [CrossRef]
  • 18. C. Onat, S. E. Hamamci, and S. Obuz, “A practical PI tuning approach for time delay systems,” IFAC Proc., vol. 45, no. 14, pp. 102–107, 2012. [CrossRef]
  • 19. C. Onat, “A new concept on PI design for time delay systems: Weighted geometrical center,” Int. J. Innov. Comput. Inf. Control, vol. 9, no. 4, pp. 1539–1556, 2013.
  • 20. M. M. Ozyetkin, and N. Tan, “Practical tuning algorithm of PDμ controller for processes with time delay,” IFAC PapersOnLine, vol. 50, no. 1, pp. 9230–9235, 2017. [CrossRef]
  • 21. M. M. Ozyetkin, C. Onat, and N. Tan, “PI-PD controller design for time delay systems via the weighted geometrical center method,” Asian J. Control, vol. 22, no. 5, pp. 1811–1826, 2020. [CrossRef]
  • 22. C. B. Kadu, S. Tidame, P. S. Vikhe, and S. M. Turkane, “Design of PI controller for liquid level system using Siemens distributed control system,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 2783–2789, 2019. [CrossRef]
  • 23. M. M. Ozyetkin, C. Onat, and N. Tan, “PID tuning method for integrating processes having time delay and inverse response,” IFAC PapersOnLine, vol. 51, no. 4, pp. 274–279, 2018. [CrossRef]
  • 24. F. Schrödel, Stability Region Based Robust Controller Synthesis, PhD Thesis. Institute of Automatic Control, RWTH Aachen University, 2016. Aachen, Germany.
  • 25. R. Toscano, “A simple robust PI/PID controller design via numerical optimization approach,” J. Process Control, vol. 15, no. 1, pp. 81–88, 2005. [CrossRef]
  • 26. Y. Lee, J. Lee, and S. Park, “PID controller tuning for integrating and unstable processes with time delay,” Chem. Eng. Sci., vol. 55, no. 17, pp. 3481–3493, 2000. [CrossRef]
  • 27. C.-C. Chen, and H.-P. Huang, “Control-system synthesis for open-loop unstable process with time delay,” IEE Proc. Control Theor. Appl., vol. 144, no. 4, pp. 334–346, 1997. [CrossRef]
  • 28. É. Poulin, and A. Pomerleau, “PID tuning for integrating and unstable processes,” IEE Proc. Control Theor. Appl., vol. 143, no. 5, pp. 429–435, 1996. [CrossRef]
APA Çetintaş G, Ozyetkin M, HAMAMCI S (2023). A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. , 376 - 384. 10.5152/electr.2022.22147
Chicago Çetintaş Gülten,Ozyetkin Munevver Mine,HAMAMCI SERDAR ETHEM A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. (2023): 376 - 384. 10.5152/electr.2022.22147
MLA Çetintaş Gülten,Ozyetkin Munevver Mine,HAMAMCI SERDAR ETHEM A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. , 2023, ss.376 - 384. 10.5152/electr.2022.22147
AMA Çetintaş G,Ozyetkin M,HAMAMCI S A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. . 2023; 376 - 384. 10.5152/electr.2022.22147
Vancouver Çetintaş G,Ozyetkin M,HAMAMCI S A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. . 2023; 376 - 384. 10.5152/electr.2022.22147
IEEE Çetintaş G,Ozyetkin M,HAMAMCI S "A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems." , ss.376 - 384, 2023. 10.5152/electr.2022.22147
ISNAD Çetintaş, Gülten vd. "A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems". (2023), 376-384. https://doi.org/10.5152/electr.2022.22147
APA Çetintaş G, Ozyetkin M, HAMAMCI S (2023). A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. Electrica, 23(2), 376 - 384. 10.5152/electr.2022.22147
Chicago Çetintaş Gülten,Ozyetkin Munevver Mine,HAMAMCI SERDAR ETHEM A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. Electrica 23, no.2 (2023): 376 - 384. 10.5152/electr.2022.22147
MLA Çetintaş Gülten,Ozyetkin Munevver Mine,HAMAMCI SERDAR ETHEM A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. Electrica, vol.23, no.2, 2023, ss.376 - 384. 10.5152/electr.2022.22147
AMA Çetintaş G,Ozyetkin M,HAMAMCI S A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. Electrica. 2023; 23(2): 376 - 384. 10.5152/electr.2022.22147
Vancouver Çetintaş G,Ozyetkin M,HAMAMCI S A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems. Electrica. 2023; 23(2): 376 - 384. 10.5152/electr.2022.22147
IEEE Çetintaş G,Ozyetkin M,HAMAMCI S "A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems." Electrica, 23, ss.376 - 384, 2023. 10.5152/electr.2022.22147
ISNAD Çetintaş, Gülten vd. "A Simple Graphical-Based Propo rtion al–In tegra l–Der ivati ve Tuning Method for Time-Delay Systems". Electrica 23/2 (2023), 376-384. https://doi.org/10.5152/electr.2022.22147