Yıl: 2022 Cilt: 26 Sayı: 6 Sayfa Aralığı: 1555 - 1572 Metin Dili: İngilizce DOI: 10.29228/jrp.249 İndeks Tarihi: 27-05-2023

Innovative drug carrier systems containing graphene

Öz:
Research on graphene and graphene oxide have increased in recent years due to their properties, which give advantages for drug delivery systems. They have hexagonal and two dimensional-2D structures with one atom thick. Drug delivery systems which include these molecules are able to go into cells and reach tissues and organs. Additionally, a high amount of drugs can be loaded due to their large surface area. Graphene oxide has functional groups that gain more ability to adsorption than graphene. Both of them are used for both therapeutic and diagnostic purposes including medical imaging. They also both have antibacterial activity and graphene oxide has stronger activity than graphene. Due to its structural properties graphene oxide is more preferred in drug delivery studies. In this review studies of graphene and graphene oxide containing drug delivery systems have been overviewed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Daniyal M, Liu B, Wang W. Comprehensive review on graphene oxide for use in drug delivery system. Curr Med Chem. 2020; 27(22): 3665-3685. [CrossRef]
  • 2. Bedeloğlu A, Taş M. Grafen ve grafen üretim yöntemleri. AKU J Sci Eng. 2016; 16(3): 544–554.
  • 3. Sun L. Structure and synthesis of graphene oxide. Chinese J Chem Eng. 2019; 27(10): 2251–2260. [CrossRef]
  • 4. Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of graphene and graphene oxide in smart drug/gene delivery: Is the world still flat? Int J Nanomedicine. 2020; 15: 9469-9496. [CrossRef]
  • 5. Donmez S. Radiation detection and measurement. Nuclear Medicine Seminars. 2017; 3(3): 172–178.
  • 6. Canefe K, Duman G. Selective drug delivery and targeting. J Fac Pharm Ankara Univ. 1994; 23(1): 53–63. [CrossRef]
  • 7. Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nat Med. 2003; 9(1): 135–139. [CrossRef]
  • 8. Tüylek Z. İlaç taşıyıcı sistemler ve nanoteknolojik etkileşim. Bozok Tıp Derg. 2017; 7(3): 89–98.
  • 9. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat. 2005; 4(4): 363– 374. [CrossRef]
  • 10. Croitoru AM, Moros A, Tihauan B, Oprea O, Motelica L, Trus R, Nicoara AI, Popescu RC, Savu D, Mihaiescu DE, Ficai A. Novel graphene oxide/quercetin and graphene oxide/juglone nanostructured platforms as effective drug delivery systems with biomedical applications. Nanomaterials. 2022; 12: 1943. [CrossRef]
  • 11. Gholami A, Emadi F, Amini A, Shokripour M, Chashmpoosh M, Omidifar N. Functionalization of graphene oxide nanosheets can reduce their cytotoxicity to dental pulp stem cells. J of Nanomaterials.2020; 6942707: 14. [CrossRef]
  • 12. Kumar Sur U. Graphene: A rising star on the horizon of materials science. Int J of Electrochemistry. 2012; 237689: 12. [CrossRef]
  • 13. Sui C, Zhao Y, Zhang Z, He J, Zhang Z, He X, Wang C, Wu J. Morphology-controlled tensile mechanical characteristics in grapheneallotropes. Acs Omega. 2017; 2(7): 3977–3988. [CrossRef]
  • 14. Machado M, Oliveira AML, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene biosensors—a molecular approach. Nanomaterials. 2022; 12: 1624. [CrossRef]
  • 15. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011; 5(9): 6971–6980. [CrossRef]
  • 16. Davies P, Tzalenchuk A, Wiper P, Walton S. Summary of graphene (and related compounds) chemical and physical properties. Nucl Decommissioning Auth. 2016; 4–6.
  • 17. Brisebois PP, Siaj M. Harvesting graphene oxide–years 1859 to 2019:A review of its structure, synthesis, properties and exfoliation. J Mater Chem C. 2020; 8(5): 1517–1547. [CrossRef]
  • 18. Liu F, Zhang L, Wang L, Zhao B, Wu W. Graphene oxide for electronics. Oxide Electron. 2021; 1–19. [CrossRef]
  • 19. Dideikin AT, Vul AY. Graphene oxide and derivatives: the place in graphene family. Front Phys. 2019; 6: 149. [CrossRef]
  • 20. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007; 7(11): 3499–3503. [CrossRef]
  • 21. Rhazouani A, Gamrani H, El Achaby M, Aziz K, Gebrati L, Uddin MS, Aziz F. Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. Biomed Res Int. 2021; 5518999. [CrossRef]
  • 22. Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019; 12(5): 973–990. [CrossRef]
  • 23. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013; 9(12) :9243–9257. [CrossRef]
  • 24. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005; 172(12): 1487–1490. [CrossRef]
  • 25. Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci. 2018; 516 :332–341. [CrossRef]
  • 26. Zhao X, Liu L, Li X, Zeng J, Jia X, Liu P. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir. 2014; 30(34): 10419–10429. [CrossRef]
  • 27. Gonzalez-Rodriguez R, Campbell E, Naumov A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One. 2019; 14(6): e0217072. [CrossRef]
  • 28. Deb A, Vimala R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J Drug Deliv Sci Technol. 2018; 43: 333–342. [CrossRef]
  • 29. Kooti M, Sedeh AN, Motamedi H, Rezatofighi SE. Magnetic graphene oxide inlaid with silver nanoparticles as antibacterial and drug delivery composite. Appl Microbiol Biotechnol. 2018; 102(8): 3607–3621. [CrossRef]
  • 30. Jampilek J, Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials (Basel). 2021; 14(5): 1059. [CrossRef]
  • 31. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011; 6: 2963. [CrossRef]
  • 32. Fan X, Jiao G, Gao L, Jin P, Li X. The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. J Mater Chem B. 2013; 1(20): 2658–2664. [CrossRef]
  • 33. Rezaian M, Maleki R, Dahri Dahroud M, Alamdari A, Alimohammadi M. pH-sensitive co-adsorption/release of doxorubicin and paclitaxel by carbon nanotube, fullerene, and graphene oxide in combination with N- isopropylacrylamide: A molecular dynamics study. Biomolecules. 2018; 8(4): 127. [CrossRef]
  • 34. Asghar W, Shafiee H, Velasco V, Sah VR, Guo S, El Assal R, Inci F, Rajagopalan A, Jahangir M, Anchan RM, Mutter GL, Ozkan M, Ozkan CS, Demirci, U. Toxicology study of single-walled carbon nanotubes and reduced graphene oxide in human sperm. Sci Rep. 2016; 6(1): 1–11. [CrossRef]
  • 35. Chen L, Hu P, Zhang L, Huang S, Luo L, Huang C. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci China Chem. 2012; 55(10): 2209–2216. [CrossRef]
  • 36. Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol. 2019; 51: 672–681. [CrossRef]
  • 37. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol Mater Eng. 2013; 298(5): 504–520. [CrossRef]
  • 38. Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int J Pharm. 2015; 484(1–2): 57–74. [CrossRef]
  • 39. Erdal MS, Güngör S. Electrospun nanofibers as carriers in dermal drug delivery. In: Yata VK, Ranjan S, Dasgupta N, Lichtfouse E. (Eds). Nanopharmaceuticals: Principles and Applications. Springer, Cham., Switzerland, 2020, pp. 139-164. [CrossRef]
  • 40. Esentürk I, Erdal MS, Güngör S. Electrospinning method to produce drug-loaded nanofibers for topical/ transdermal drug delivery applications. J Pharm Istanbul Univ. 2016; 46(1): 49–69.
  • 41. Patel MM. Colon: a gateway for chronotherapeutic drug delivery systems. Expert Opinion on Drug Delivery. 2015; 12: 1389–1395. [CrossRef]
  • 42. Mao Z, Li J, Huang W, Jiang H, Zimba BL, Chen L, Wan J, Wu Q. Preparation of poly (lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery. RSC Adv. 2018; 8(30): 16619–16625. [CrossRef]
  • 43. Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C. 2019; 103: 109768. [CrossRef]
  • 44. Liu Y, Park M, Shin HK, Pant B, Choi J, Park YW, Lee JY, Park S, Kim HY. Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J Ind Eng Chem. 2014; 20(6): 4415–4420. [CrossRef]
  • 45. Abdoli M, Sadrjavadi K, Arkan E, Zangeneh MM, Moradi S, Zangeneh A, Shahlaei M, Khaledian S. Polyvinyl alcohol/gum tragacanth/graphene oxide composite nanofiber for antibiotic delivery. J Drug Deliv Sci Technol. 2020; 60: 102044. [CrossRef]
  • 46. Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng C. 2015; 48: 384–390. [CrossRef]
  • 47. Yang S, Zhang X, Zhang D. Electrospun chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane with ciprofloxacin antibiotic drug for potential wound dressing application. Int J Mol Sci. 2019; 20(18): 4395. [CrossRef]
  • 48. Prasad R, Yadav AS, Gorain M, Chauhan DS, Kundu GC, Srivastava R, Selvaraj K. Graphene oxide supported liposomes as red emissive theranostics for phototriggered tissue visualization and tumor regression. ACS Appl Bio Mater. 2019; 2(8): 3312–3320. [CrossRef]
  • 49. Gokce EH, Korkmaz E, Tuncay-Tanrıverdi S, Dellera E, Sandri G, Bonferoni MC, Ozer O. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanomed. 2012; 7: 5109–5117. [CrossRef]
  • 50. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015; 115(19): 10938–10966. [CrossRef]
  • 51. Trucillo P, Reverchon E. Production of PEG-coated liposomes using a continuous supercritical assisted process. The Journal of Supercritical Fluids. 2021; 167: 105048. [CrossRef]
  • 52. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharmaceut Sci. 2015; 10(2): 81–98. [CrossRef]
  • 53. Hashemi M, Omidi M, Muralidharan B, Tayebi L, Herpin MJ, Mohagheghi MA, Mohammadi J, Smyth H, Milner TE. Acta Biomater. 2018; 65: 376–392. [CrossRef]
  • 54. Zheng F, Li R, He Q, Koral K, Tao J, Fan L, Xiang R, Ma J, Wang N, Yin Y, Huang Z, Xu P, Xu H. The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Mater Sci Eng C. 2020; 109: 110560. [CrossRef]
  • 55. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015; 5(2): 123–127. [CrossRef]
  • 56. Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev. 2018; 128: 3-28. [CrossRef]
  • 57. Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev Nutr food Sci. 2019; 24(3): 225-234. [CrossRef]
  • 58. Tao R, Wang C, Zhang C, Li W, Zhou H, Chen H, Ye J. Characterization, cytotoxicity and genotoxicity of graphene oxide and folate coupled chitosan nanocomposites loading polyprenol and fullerene based nanoemulsion against MHCC97H cells. J Biomed Nanotechnol. 2019; 15(3): 555–570. [CrossRef]
  • 59. Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020; 10(5): 847. [CrossRef]
  • 60. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010; 385(1– 2): 113–142. [CrossRef]
  • 61. Cui X, Dong L, Zhong S, Shi C, Sun Y, Chen P. Sonochemical fabrication of folic acid functionalized multistimuli- responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Chem Eng J. 2017; 326: 839– 848. [CrossRef]
  • 62. Rosa P, Friedrich ML, Dos Santos J, Librelotto D, Maurer LH, Emanuelli T, da Silva CB, Adams A. Desonide nanoencapsulation with acai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. J Photochem Photobiol B Biol. 2019; 199: 111606. [CrossRef]
  • 63. Li Y, Jiang L. Preparation of graphene oxide–chitosan nanocapsules and their applications as carriers for drug delivery. RSC Adv. 2016; 6(106): 104522–104528. [CrossRef]
  • 64. Mao Y, Zou C, Jiang Y, Fu D. Erythrocyte-derived drug delivery systems in cancer therapy. Chinese Chem Lett. 2021; 32(3): 990–998. [CrossRef]
  • 65. Villa CH, Seghatchian J, Muzykantov V. Drug delivery by erythrocytes: Primum non nocere. Transfus Apher Sci. 2016; 55(3): 275–280. [CrossRef]
  • 66. Fan W, Yan W, Xu Z, Ni H. Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids Surfaces B Biointerfaces. 2012; 95: 258–265. [CrossRef]
  • 67. Li J, Huang X, Huang R, Jiang J, Wang Y, Zhang J, Jiang H, Xiang X, Chen W, Nie X, Gui R. Erythrocyte membrane camouflaged graphene oxide for tumor-targeted photothermal-chemotherapy. Carbon. 2019; 146: 660–670. [CrossRef]
  • 68. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014; 39(2): 268–307. [CrossRef]
  • 69. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug- dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014; 6(3): 139-150. [CrossRef]
  • 70. Hsu H, Bugno J, Lee S, Hong S. Dendrimer based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2017; 9(1): e1409. [CrossRef]
  • 71. Hashemi H, Namazi H. Understanding the pH dependent fluorescence and doxorubicin release from graphene oxide functionalized citric acid dendrimer as a highly efficient drug delivery system. Mater Today Commun. 2021; 28: 102593. [CrossRef]
  • 72. Siriviriyanun A, Imae T, Calderó G, Solans C. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids Surfaces B Biointerfaces. 2014; 121: 469–473. [CrossRef]
  • 73. Karimi S, Namazi H. Fe3O4@ PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. J Alloys Compd. 2021; 879: 160426. [CrossRef]
  • 74. Fard NT, Tadayon F, Panahi HA, Moniri E. The synthesis of functionalized graphene oxide by polyester dendrimer as a pH-sensitive nanocarrier for targeted delivery of venlafaxine hydrochloride: Central composite design optimization. J Mol Liq. 2022; 349: 118149. [CrossRef]
  • 75. Pourjavadi A, Tehrani ZM, Shakerpoor A. Dendrimer-like supramolecular nanovalves based on polypseudorotaxane and mesoporous silica-coated magnetic graphene oxide: a potential pH-sensitive anticancer drug carrier. Supramol Chem. 2016; 28(7–8): 624–633. [CrossRef]
  • 76. Zhou Z, Li Y, Yao S, Yan H. Preparation of calcium carbonate@ graphene oxide core–shell microspheres in ethylene glycol for drug delivery. Ceram Int. 2016; 42(2): 2281–2288. [CrossRef]
  • 77. Liu X, Sun Q, Wang H, Zhang L, Wang J-Y. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials. 2005; 26(1): 109–115. [CrossRef]
  • 78. Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J. 2021; 159: 110706. [CrossRef]
  • 79. GV YD, Prabhu A, Anil S, Venkatesan J. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. J Drug Deliv Sci Technol. 2021; 64: 102624. [CrossRef]
  • 80. Wu K, Liu X, Li Z, Jiao Y, Zhou C. Fabrication of chitosan/graphene oxide composite aerogel microspheres with high bilirubin removal performance. Mater Sci Eng C. 2020; 106: 110162. [CrossRef]
  • 81. Zhang S, Ma B, Wang S, Duan J, Qiu J, Li D, Sang Y, Ge S, Liu H. Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chem Eng J. 2018; 331: 675–684. [CrossRef]
  • 82. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008; 60(15): 1638– 1649. [CrossRef]
  • 83. Webber MJ, Pashuck ET. (Macro) molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev. 2021; 172: 275–295. [CrossRef]
  • 84. Mauri E, Salvati A, Cataldo A, Mozetic P, Basoli F, Abbruzzese F, et al. Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. Mater Sci Eng C. 2021; 118: 111353. [CrossRef]
  • 85. Byun E, Lee H. Enhanced loading efficiency and sustained release of doxorubicin from hyaluronic acid/graphene oxide composite hydrogels by a mussel-inspired catecholamine. J Nanosci Nanotechnol. 2014; 14(10): 7395–7401. [CrossRef]
  • 86. Jafari Z, Rad AS, Baharfar R, Asghari S, Esfahani MR. Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for sumatriptan succinate. J Mol Liq. 2020; 315: 113835. [CrossRef]
  • 87. Rasoulzadeh M, Namazi H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017; 168: 320–326. [CrossRef]
  • 88. Wang J, Liu C, Shuai Y, Cui X, Nie L. Controlled release of anticancer drug using graphene oxide as a drug- binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surfaces B Biointerfaces. 2014; 113: 223–229. [CrossRef]
APA Akgün U, ESENTÜRK-GÜZEL I, ALGIN YAPAR E, Yurdasiper A, Büyükkayhan D (2022). Innovative drug carrier systems containing graphene. , 1555 - 1572. 10.29228/jrp.249
Chicago Akgün Umut,ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Yurdasiper Aysu,Büyükkayhan Derya Innovative drug carrier systems containing graphene. (2022): 1555 - 1572. 10.29228/jrp.249
MLA Akgün Umut,ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Yurdasiper Aysu,Büyükkayhan Derya Innovative drug carrier systems containing graphene. , 2022, ss.1555 - 1572. 10.29228/jrp.249
AMA Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D Innovative drug carrier systems containing graphene. . 2022; 1555 - 1572. 10.29228/jrp.249
Vancouver Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D Innovative drug carrier systems containing graphene. . 2022; 1555 - 1572. 10.29228/jrp.249
IEEE Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D "Innovative drug carrier systems containing graphene." , ss.1555 - 1572, 2022. 10.29228/jrp.249
ISNAD Akgün, Umut vd. "Innovative drug carrier systems containing graphene". (2022), 1555-1572. https://doi.org/10.29228/jrp.249
APA Akgün U, ESENTÜRK-GÜZEL I, ALGIN YAPAR E, Yurdasiper A, Büyükkayhan D (2022). Innovative drug carrier systems containing graphene. Journal of research in pharmacy (online), 26(6), 1555 - 1572. 10.29228/jrp.249
Chicago Akgün Umut,ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Yurdasiper Aysu,Büyükkayhan Derya Innovative drug carrier systems containing graphene. Journal of research in pharmacy (online) 26, no.6 (2022): 1555 - 1572. 10.29228/jrp.249
MLA Akgün Umut,ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Yurdasiper Aysu,Büyükkayhan Derya Innovative drug carrier systems containing graphene. Journal of research in pharmacy (online), vol.26, no.6, 2022, ss.1555 - 1572. 10.29228/jrp.249
AMA Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D Innovative drug carrier systems containing graphene. Journal of research in pharmacy (online). 2022; 26(6): 1555 - 1572. 10.29228/jrp.249
Vancouver Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D Innovative drug carrier systems containing graphene. Journal of research in pharmacy (online). 2022; 26(6): 1555 - 1572. 10.29228/jrp.249
IEEE Akgün U,ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Yurdasiper A,Büyükkayhan D "Innovative drug carrier systems containing graphene." Journal of research in pharmacy (online), 26, ss.1555 - 1572, 2022. 10.29228/jrp.249
ISNAD Akgün, Umut vd. "Innovative drug carrier systems containing graphene". Journal of research in pharmacy (online) 26/6 (2022), 1555-1572. https://doi.org/10.29228/jrp.249