Yıl: 2022 Cilt: 28 Sayı: 2 Sayfa Aralığı: 63 - 72 Metin Dili: Türkçe DOI: 10.4274/tnd.2022.90023 İndeks Tarihi: 28-05-2023

Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri

Öz:
Dünyada birçok kimyasal madde bulunmakta ve bu kimyasalların bir kısmının doz ya da maruz kalınan süre ilişkili toksik etkileri bulunmaktadır. Özellikle iyatrojenik nedenli olanların etkileri daha iyi tanımlanabilmektedir. Ancak, laboratuvarlarda toksik olduğu tespit edilen maddelerin günlük hayatta da (örneğin; işyerlerinde) toksik etkiye sahip olduğunu kanıtlamak zordur. Günümüzde nörotoksik ajanların patofizyolojik etkileri hala tam bilinmemektedir. Bu derlemede bilimsel olarak kanıtlanmış çevresel ve mesleksel ajanların sinir sistemi üzerine olan nörotoksik etkilerine değinilecektir.
Anahtar Kelime:

Neurotoxicological Effects of Environmental and Occupational Agents

Öz:
There are numerous chemicals throughout the world, some of which have a dose- or exposure-related toxic effect. The effects of iatrogenic causes in particular can be better defined. It is hard to prove that in laboratories toxic substances have toxic effects in everyday life, however (e.g. workplaces). Today, the pathophysiological effects of neurotoxic agents are still unknown. This review discusses the neurotoxic effects on the nervous system of scientifically established environmental and occupational agents.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Ek CJ, Dziegielewska K M, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012;33:586-604.
  • 2. Bowler RM, Lezak MD. Neuropsychologic evaluation and exposure to neurotoxicants. In: Lotti M, Bleecker ML, (ed). Handbook of Clinical Neurology. Occupational Neurology, 2015.
  • 3. Boyes WK, Thriel CV. Neurotoxicology of nanomaterials. Chem Res Toxicol 2020;33:1121-1144.
  • 4. Costa LG. Overview of neurotoxicology. Curr Protoc Toxicol 2017;74:11.
  • 5. Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: a systematic rewiev. Neurotoxicology 2019;74:282-298.
  • 6. Heyer DB, Meredith RM. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 2017;58:23-41.
  • 7. Garcia GJ, Schroeter JD, Kimbell JS. olfactory deposition of inhaled nanoparticles in humans. Inhalation Toxicol 2015;27:394-403.
  • 8. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 2003;349:1731-1737.
  • 9. Schultz ST. Does thimerosal or other mercury exposure increase the risk for autism? A review of current literature. Acta Neurobiol Exp (Wars) 2010;70:187-195.
  • 10. Jang DH, Hoffman RS. Heavy metal chelation in neurotoxic exposures. Neurol Clin 2011;29:607-622.
  • 11. Aminoff MJ. Neurology and General Medicine. In: Bahar ZS, Çoban O (ed). 4th. Ankara: Güneş Tıp Kitabevleri, 2010.
  • 12. Bradly WG, Daroff RB, Fenichel GM, Jankovic J. Neurology in Clinical Practice. In: Tan E, Erdem-Özdamar S. 5th ed. Rota Tıp, 2008.
  • 13. Lai SM, Gu ZT, Zhao MM. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 2017;12:1648- 1654.
  • 14. Sansano M, Heredia A, Peinado I, Andrés A. Dietary acrylamide: what happens during digestion. Food Chem 2017;237:58-64.
  • 15. Basaran B, Aydin F. Estimating the acrylamide exposure of adult individuals from coffee: Turkey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020;37:2051-2060.
  • 16. Ahrari Roodi P, Moosavi Z, Goli AF, Azizzadeh M, Hosseinzadeh H. Histopathological study of protective effects of honey on subacute toxicity of acrylamide-induced tissue lesions in rats’ brain and liver. Iran J Toxicol 2018;12:1-8.
  • 17. Exon JH. A review of the toxicology of acrylamide. J Toxicol Environ Health B Crit Rev 2006;9:397-412.
  • 18. Zamani E, Shokrzadeh M, Fallah M, Shaki F. A review of acrylamide toxicity and its mechanism. Pharm Biomed Res 2017;3:1-7.
  • 19. Albalawi A, Alhasani RHA, Biswas L, et al. Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res 2018;175:103-104.
  • 20. Pennisi M, Malaguarnera G, Puglisi V, et al. Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 2013;10:3843-3854.
  • 21. Wang W, Huang L, Hu Y, Thomas ER, Li X. Neuroprotective effects of notoginsenoside R1 by upregulating Trx-1 on acrylamide-induced neurotoxicity in PC12. Hum Exp Toxicol 2020;39:797-807.
  • 22. Wang QS, Zhang CL, Zhao XL, Yu SF, Xie KQ. Malondialdehyde and catalase as the serum biomarkers of allyl chloride-induced toxic neuropathy. Toxicology 2006;227:36-44.
  • 23. Fang ZH, Miao RM, Song HY. Analysis of occupational chronic carbon disulfide poisoning: a study of 372 cases. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2018;36:202-203.
  • 24. Chalansonnet M, Carreres-Pons M, Venet T, et al. Combined exposure to carbon disulfide and low-frequency noise reversibly affects vestibular function. Neurotxicology 2018;67:270-278.
  • 25. Schramm A, Uter W, Brandt M, et al. Increased intima-media thickness in rayon workers after long-term exposure to carbon disulfide. Int Arch Occup Environ. Health 2016;89:513-519.
  • 26. DeMartino AW, Zigler DF, Fukutoc JM, Ford PC. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem Soc Rev 2017;46:21- 39.
  • 27. Polat F, Yüceyar N, Akay A, Sağduyu Kocaman A. Delayed encephalopathy of carbon monoxide intoxication and treatment with hyperbaric oxygen: a case report. Turk J Neurol 2012;18:118-122.
  • 28. Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. J Neurol Sci 2007;262:122-130.
  • 29. Beppu T. The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: a review of the literature. AJNR Am J Neuroradiol 2014;35:625-631.
  • 30. Yıldız ÖK, Yıldız B, Polat S, et al. Magnetic resonance imaging in delayed carbon monoxide leukoencephalopathy: diffusion and spectroscopy findings. Turk J Neurol 2017;23:244-245.
  • 31. İncekaya Y, Feyizi H, Bayraktar S, et al. Carbon monoxide poisoning and hyperbaric oxygen therapy. Eur Arc Med Res 2017;33:114-118.
  • 32. Mutluoglu M, Metin S, Ibrahim Arziman, Uzun G, Yildiz S. The use of hyperbaric oxygen therapy for carbon monoxide poisoning in Europe. Undersea Hyperb Med 2016;43:49-56.
  • 33. Marcotte M. Effect of irradiation on spices, herbs and seasoning-comparison with ethylene oxide fumigation. 2001 http://www.food-irradiaton.com/ spices.htm
  • 34. Sadeghniat K, Pooryaghoob G, Rafeemanesh E. N-hexane neuropathy due to shoemaking: report of five cases. Acta Med Iran 2005;43:71-74.
  • 35. Shin HU, Kim JK, Yoon BA, Ryu WY. A case of optic neuropathy associated with methyl bromide intoxication. J Korean Ophthalmol Soc 2016;57:1987.
  • 36. Park MG, Choi J, Hong YS, et al. Negative effect of methyl bromide fumigation work on the central nervous system plos one 2020. https://doi. org/10.1371/journal.pone.0236694.
  • 37. Kurtas O, Imre KY, Özer E, et al. The evaluation of deaths due to methyl alcohol intoxication. Biomed Res India 2017;28:3680-3687.
  • 38. Kaya K, Tok ÖK, Dip A, Hilal A, Çekin N. Methanol releated deaths in Adana, Turkey. Acad J Sci Res 2019;7:419-422.
  • 39. Anderson IB. Methanol. In: Olson KR (ed). Poisoning and Drug Overdose. 4th ed. New York: McGraw-Hill, Companies, 2004:89-154.
  • 40. Taşyürek M. İş Hijyeni & Kimyasal Etkenler. Bursa: Kimya Mühendisler Odası Bursa Şubesi Yayınları, 2014.
  • 41. Pohanish RP. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. 6th ed. USA: Elsevier; 2012:1752-4. Available from: https://www.nsc.org/Portals/0/Documents/facultyportal/Documents/fih- 6eappendix-b.pdf
  • 42. Mittal BV, Desai AP, Khade KR. Methyl alcohol poisoning an autopsy study of 28 cases. J Postgrad-Med 1997;37:9-13.
  • 43. Rietjens SJ, de Lange DW, Meulenbelt J. Ethylene glycol or methanol intoxication: which antidote should be used, fomepizole or ethanol. Neth J Med 2014;72:73-79.
  • 44. Koca T, Hilal A. Methyl alcohol (methanol) intoxication. The Bulletin of Legal Medicine 2020;25:128-138.
  • 45. Costa LG. Organophosphorus compounds at 80: some old and new Issues. Toxicol Sci 2018;162:24-35.
  • 46. Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018;408:101-112.
  • 47. Roman P, Cardon D, Sempere L, Carvajal F. Microbiota and organophosphates. Neurotoxicology 2019;75:200-208.
  • 48. Sainio MA Sr. Neurotoxicity of solvents. Hand Clin Neurol 2015;131:93- 110.
  • 49. Soares MV, Charão MF, Jacques MT, et al. Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes neurobehavioural changes in Caenorhabditis elegans. Environ Pollut 2020;256:113406.
  • 50. Yavari F, van Thriel C, Nitsche MA, Kuo MF. Effect of acute exposure to toluene on cortical excitability, neuroplasticity, and motor learning in healthy humans. Arch Toxicol 2018;92:3149-3162.
  • 51. Scassellati C, Bonvicini C, Benussi L, Ghidoni R, Squitti R. Neurodevelopmental disorders: metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J Trace Elem Med Biol 2020;60:126499.
  • 52. Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environ Res 2020;188:109734.
  • 53. Principi N, Esposito S. Aluminum in vaccines: does it create a safety problem? Vaccine 2018;36:5825-5831.
  • 54. Mochizuki H. Arsenic neurotoxicity in humans. Int J Mol Sci 2019;11;20:3418.
  • 55. Goel AD, Chowgule RV. Outbreak investigation of lead neurotoxicity in children from artificial jewelry cottage industry. Environ Health Prev Med 2019;24:30.
  • 56. World Health Organization Manganese in drinking-water: background document for development of WHO Guidelines for Drinkingwater Quality, 2011.
  • 57. Balachandran RC, Mukhopadhyay S, McBride D, et al. Brain manganese and the balance between essential roles and neurotoxicity J Biol Chem 2020;295:6312-6329.
  • 58. Yang L, Zhang Y, Wang F, et al. Toxicity of mercury: molecular evidence. Chemosphere 2020;245:125586.
  • 59. Lin G, Sun Y, Long J, et al. Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons. Toxicol Lett 2020;319:66-73.
  • 60. Liu M, Pi H, Xi Y, et al. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 2021;17:903-924.
APA Gozubatik-Celik R, EMRE U, Kiran S (2022). Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. , 63 - 72. 10.4274/tnd.2022.90023
Chicago Gozubatik-Celik Rabia Gokcen,EMRE UFUK,Kiran Sibel Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. (2022): 63 - 72. 10.4274/tnd.2022.90023
MLA Gozubatik-Celik Rabia Gokcen,EMRE UFUK,Kiran Sibel Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. , 2022, ss.63 - 72. 10.4274/tnd.2022.90023
AMA Gozubatik-Celik R,EMRE U,Kiran S Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. . 2022; 63 - 72. 10.4274/tnd.2022.90023
Vancouver Gozubatik-Celik R,EMRE U,Kiran S Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. . 2022; 63 - 72. 10.4274/tnd.2022.90023
IEEE Gozubatik-Celik R,EMRE U,Kiran S "Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri." , ss.63 - 72, 2022. 10.4274/tnd.2022.90023
ISNAD Gozubatik-Celik, Rabia Gokcen vd. "Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri". (2022), 63-72. https://doi.org/10.4274/tnd.2022.90023
APA Gozubatik-Celik R, EMRE U, Kiran S (2022). Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. Türk Nöroloji Dergisi, 28(2), 63 - 72. 10.4274/tnd.2022.90023
Chicago Gozubatik-Celik Rabia Gokcen,EMRE UFUK,Kiran Sibel Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. Türk Nöroloji Dergisi 28, no.2 (2022): 63 - 72. 10.4274/tnd.2022.90023
MLA Gozubatik-Celik Rabia Gokcen,EMRE UFUK,Kiran Sibel Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. Türk Nöroloji Dergisi, vol.28, no.2, 2022, ss.63 - 72. 10.4274/tnd.2022.90023
AMA Gozubatik-Celik R,EMRE U,Kiran S Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. Türk Nöroloji Dergisi. 2022; 28(2): 63 - 72. 10.4274/tnd.2022.90023
Vancouver Gozubatik-Celik R,EMRE U,Kiran S Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri. Türk Nöroloji Dergisi. 2022; 28(2): 63 - 72. 10.4274/tnd.2022.90023
IEEE Gozubatik-Celik R,EMRE U,Kiran S "Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri." Türk Nöroloji Dergisi, 28, ss.63 - 72, 2022. 10.4274/tnd.2022.90023
ISNAD Gozubatik-Celik, Rabia Gokcen vd. "Çevresel ve Mesleksel Ajanların Nörotoksik Etkileri". Türk Nöroloji Dergisi 28/2 (2022), 63-72. https://doi.org/10.4274/tnd.2022.90023