Yıl: 2023 Cilt: 12 Sayı: 1 Sayfa Aralığı: 224 - 230 Metin Dili: İngilizce DOI: 10.5455/medscience.2022.11.252 İndeks Tarihi: 29-05-2023

Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel

Öz:
Bone metastasis is one of the most encountered complications among cancer patients and majority of cancer types has led to bone metastasis. Paclitaxel (PCX) is an anticancer agent commonly used in cancer treatment. However, its clinical use is restricted owing to poor water solubility. PCL NPs were investigated to cope with solubility problem of PCX. The size, polydispersity index and zeta potential of PCL were 383.8±2.4 nm, 0.253±0.122 and +51.3±6.1 mV, respectively. The PCX encapsulation efficiency was 77.2±2.1%. Subsequently, in situ gellling system was prepared by using different Pluronic F-127 concentration in order to determine the optimum ratio. İn situ gel formulation containing 20% Pluronic F-127 was selected as the optimum formulation and subjected to characterization tests. The viscosity of in situ gelling system with CS/PCX-PCL NPs at room temperature (25 °C±0.1) and at body temperature (37 °C±0.1) were found 137.00 ±3.05 cP and 890.30 ±89.61 cP at 100 rpm, respectively. According to the release results, in situ gel provided prolonged release profile compared to PCL NPs alone. Consequently, in situ gel containing CS/PCX-PCL NP elucidated in detail is a promising approach for locally applicable injectable systems.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Vinay R, KusumDevi V. Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Delivery. 2016;23:21-9.
  • 2. Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nature Reviews Endocrinology. 2011;7:208-18.
  • 3. Malla S, Neupane R, Boddu SH, et al. Application of nanocarriers for paclitaxel delivery and chemotherapy of cancer. Paclitaxel: Elsevier; 2022,73-127.
  • 4. Bădilă AE, Rădulescu DM, Niculescu A-G, et al. Recent advances in the treatment of bone metastases and primary bone tumors: an up-to- date Kampan NC, Madondo MT, McNally OM, et al. Paclitaxel and its evolving role in the management of ovarian cancer. BioMed research international. 2015;2015.
  • 5. Marupudi NI, Han JE, Li KW, et al. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert opinion on drug safety. 2007;6:609-21.
  • 6. Sayed Aly MN. Intra-articular drug delivery: a fast growing approach. Recent patents on drug delivery & formulation. 2008;2:231-7.
  • 7. Cao Y, Ma Y, Tao Y,et al. Intra-articular drug delivery for osteoarthritis treatment. Pharmaceutics. 2021;13:2166.
  • 8. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release. 2001;70:1-20.
  • 9. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. Journal of drug targeting. 2008;16:108-23.
  • 10. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces. 2010;75:1-18.
  • 11. Nunes D, Andrade S, Ramalho MJ,et al. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers. 2022;14:1010.
  • 12. Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics. 2004;58:409-26.
  • 13. Tan ML, Shao P, Friedhuber AM, et al. The potential role of free chitosan in bone trauma and bone cancer management. Biomaterials. 2014;35:7828-38.
  • 14. Frank L, Onzi G, Morawski A, et al. Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive and Functional Polymers. 2020;147:104459.
  • 15. Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Advanced Healthcare Materials. 2021;10:2001341.
  • 16. Rafael D, Melendres MMR,Andrade F, et al. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. International Journal of Pharmaceutics. 2021;606:120954.
  • 17. Abbas MN, Khan SA, Sadozai SK, et al. Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers. 2022;14:1135.
  • 18. Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. Journal of Advanced Pharmaceutical Technology & Research. 2013;4:9.
  • 19. Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines. 2018;6:7.
  • 20. Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics. 2019;11:671.
  • 21. Ünal S, Doğan O, Aktaş Y. Paclitaxel-loaded polycaprolactone nanoparticles for lung tumors; formulation, comprehensive in vitro characterization and release kinetic studies. Ankara universitesi eczacilik fakultesi dergisi. 2022;46.
  • 22. Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, et al. Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. European journal of pharmaceutics and biopharmaceutics. 2010;76:296-303.
  • 23. Fernandes de Rafael D, Da Silva Andrade FR, Martínez Trucharte F, et al. Sterilization Procedure for Temperature-Sensitive Hydrogels Loaded with Silver Nanoparticles for Clinical Applications. 2019.
  • 24. García-Couce J, Tomás M, Fuentes G, et al. Chitosan/Pluronic F127 thermosensitive hydrogel as an injectable dexamethasone delivery carrier. Gels. 2022;8:44.
  • 25. Kesarla R, Tank T, Vora PA, et al. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Delivery. 2016;23:2363- 70.
  • 26. Kim E-Y, Gao Z-G, Park J-S, et al. rhEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery. International Journal of Pharmaceutics. 2002;233:159-67.
  • 27. Kocak FZ, Talari ACS, Yar M, Rehman IU. In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications. International Journal of Molecular Sciences. 2020;21:1633.
  • 28. Engin K, Leeper DB, Cater JR, et al. Extracellular pH distribution in human tumours. International Journal of Hyperthermia. 1995;11:211-6.
  • 29. Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. European Journal of Pharmaceutical Sciences. 1998;6:105-12.
  • 30. Oz UC, Toptas M, Kucukturkmen B, et al. Guided bone regeneration by the development of alendronate sodium loaded in-situ gel and membrane formulations. Eur J Pharm Sci. 2020;155:105561.
  • 31. Park EK, Song K, editors. Rheological Properties of Poloxamer 407 Solutions and Gels2011.
  • 32. Li XY, Zhu ZJ, Cheng AY. [Characteristics of poloxamer thermosensitive in situ gel of dexamethasone sodium phosphate]. Yao Xue Xue Bao. 2008;43:208-13.
  • 33. Miller SC, Drabik BR. Rheological properties of poloxamer vehicles. International Journal of Pharmaceutics. 1984;18:269-76.
  • 34. Baloglu E, Karavana SY, Senyigit ZA, Guneri T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharmaceutical Development and Technology. 2011;16:627-36.
  • 35. Freitas M, Farah M, Bretas R, et al. Rheological characterization of Poloxamer 407 nimesulide gels. Revista de Ciências Farmacêuticas Básica e Aplicada. 2006;27.
  • 36. Kurakula M, Naveen NR. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti- proliferative activity against tongue carcinoma. Marine Drugs. 2020;18:201.
APA UNAL S, celik tekeli m, Doğan O, Aktas Y (2023). Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. , 224 - 230. 10.5455/medscience.2022.11.252
Chicago UNAL SEDAT,celik tekeli merve,Doğan Osman,Aktas Yesim Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. (2023): 224 - 230. 10.5455/medscience.2022.11.252
MLA UNAL SEDAT,celik tekeli merve,Doğan Osman,Aktas Yesim Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. , 2023, ss.224 - 230. 10.5455/medscience.2022.11.252
AMA UNAL S,celik tekeli m,Doğan O,Aktas Y Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. . 2023; 224 - 230. 10.5455/medscience.2022.11.252
Vancouver UNAL S,celik tekeli m,Doğan O,Aktas Y Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. . 2023; 224 - 230. 10.5455/medscience.2022.11.252
IEEE UNAL S,celik tekeli m,Doğan O,Aktas Y "Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel." , ss.224 - 230, 2023. 10.5455/medscience.2022.11.252
ISNAD UNAL, SEDAT vd. "Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel". (2023), 224-230. https://doi.org/10.5455/medscience.2022.11.252
APA UNAL S, celik tekeli m, Doğan O, Aktas Y (2023). Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. Medicine Science, 12(1), 224 - 230. 10.5455/medscience.2022.11.252
Chicago UNAL SEDAT,celik tekeli merve,Doğan Osman,Aktas Yesim Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. Medicine Science 12, no.1 (2023): 224 - 230. 10.5455/medscience.2022.11.252
MLA UNAL SEDAT,celik tekeli merve,Doğan Osman,Aktas Yesim Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. Medicine Science, vol.12, no.1, 2023, ss.224 - 230. 10.5455/medscience.2022.11.252
AMA UNAL S,celik tekeli m,Doğan O,Aktas Y Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. Medicine Science. 2023; 12(1): 224 - 230. 10.5455/medscience.2022.11.252
Vancouver UNAL S,celik tekeli m,Doğan O,Aktas Y Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel. Medicine Science. 2023; 12(1): 224 - 230. 10.5455/medscience.2022.11.252
IEEE UNAL S,celik tekeli m,Doğan O,Aktas Y "Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel." Medicine Science, 12, ss.224 - 230, 2023. 10.5455/medscience.2022.11.252
ISNAD UNAL, SEDAT vd. "Thermosensitive pluronic® F127-based in situ gel formulation containing nanoparticles for the sustained delivery of paclitaxel". Medicine Science 12/1 (2023), 224-230. https://doi.org/10.5455/medscience.2022.11.252