Yıl: 2022 Cilt: 47 Sayı: 4 Sayfa Aralığı: 501 - 509 Metin Dili: İngilizce DOI: 10.1515/tjb-2021-0264 İndeks Tarihi: 29-05-2023

Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease

Öz:
Objectives: This study aims the covalent immobilization of Jack bean urease on Fe3O4 magnetic nanoparticles via glutaraldehyde (urease@MNPs-Si-Glu) and epichlo- rohydrin (urease@MNPs-ECH) spacer arms. Methods: The optimum pH and temperature, thermal, storage and reuse stability of free and immobilized urease preparations were investigated. Thermodynamics cha- racterizations of free and immobilized urease preparations were also studied. Results: The free urease and both immobilized urease pre- parations showed maximal catalytic activity at pH 7.5. The free urease had a maximal catalytic activity at 50 °C, while the both immobilized urease preparations exhibited their maxi- mal catalytic activities at 70 °C. The urease@MNPs-Si-Glu and urease@MNP-ECH showed 2.7- and 1.9-fold higher thermal stability than the free urease at 60 °C, respectively. The free urease remained 30% of their initial activity at 4 °C, while urease@MNPs-Si-Glu and urease@MNPs-ECH retained 72 and 60% of their initial activities at the same conditions. The urease@MNPs-Si-Glu and urease@MNPs-ECH preserved 53 and 52% of their initial activities, respectively for urea hydrolysis after 20 reuses. Conclusions: The urease@MNPs-Si-Glu and urease@MNPs- ECH may find a potential application area in urea hydrolysis.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: historical aspects, catalytic, and non-catalytic properties-a review. J Adv Res 2018;13:3–17.
  • 2. Krajewska B. Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym 2009;59:9–21.
  • 3. Sahoo B, Sahu SK, Pramanik P. A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. J Mol Catal B Enzym 2011;69:95–102.
  • 4. Liu Q, Xun G, Feng Y. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol Adv 2019;37: 530–7.
  • 5. DeSantis G, Jones JB. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 1999;10: 324–30.
  • 6. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. Industrial use of immobilized enzymes. Chem Soc Rev 2013;42:6437–74.
  • 7. Sankar K, Achary A. Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: optimization, adsorption, thermodynamic and reaction kinetic studies. Chem Pap 2020;74:459–70.
  • 8. Kim H, Hassouna F, Muzika F, Arabacı M, Kopecký D, Sedlářová I, et al. Urease adsorption immobilization on ionic liquid-like macroporous polymeric support. J Mater Sci 2019;54:14884–96.
  • 9. Liang X, Li Q, Shi Z, Bai S, Li Q. Immobilization of urease in metal– organic frameworks via biomimetic mineralization and its application in urea degradation. Chin J Chem Eng 2020;28: 2173–80.
  • 10. Alatawi FS, Monier M, Elsayed NH. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease. Int J Biol Macromol 2018;114:1018–25.
  • 11. Akkas T, Zakharyuta A, Taralp A, Ow-Yang CW. Cross-linked enzyme lyophilisates (CLELs) of urease: a new method to immobilize ureases. Enzym Microb Technol 2020;132:109390.
  • 12. Cipolatti EP, Val ́erio A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, et al. Nanomaterials for biocatalyst immobilization– state of the art and future trends. RSC Adv 2016;6:104675–92.
  • 13. Bilal M, Zhao Y, Rasheed T, Iqbal HMN. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 2018;120:2530–44.
  • 14. Soozanipour A, Taheri-Kafrani A, Landarani Isfahani A. Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem Eng J 2015;270:235–43.
  • 15. Alagöz D, Çelik A, Yildirim D, Tükel SS, Binay B. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. J Mol Catal B Enzym 2016;130:40–7.
  • 16. Hadadi M, Habibi A. Candida rugosa lipase immobilized on functionalized magnetic Fe3O4 nanoparticles as a sustainable catalyst for production of natural epoxides. Chem Pap 2019;73: 1917–29.
  • 17. Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochem 2012;47:1220–7.
  • 18. Vazquez-Ortega PG, Alcaraz-Fructuoso MT, Rojas-Contreras JA, López-Miranda J, Fernandez-Lafuente R. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions. Enzym Microb Technol 2018;110:38–45.
  • 19. Boller T, Meier C, Menzler S. EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev 2002;6: 509–19.
  • 20. Mateo C, Grazú V, Pessela BCC, Montes T, Palomo JM, Torres R, et al. Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochem Soc Trans 2007;35: 1593–601.
  • 21. Vasić K, Knez Ž, Kumar S, Kumar Pandey J, Leitgeb M. Epoxy functionalized carboxymethyl dextran magnetic nanoparticles for immobilization of alcohol dehydrogenase. Acta Chim Slov 2020;67:1172–9.
  • 22. Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 2007;308:46–55.
  • 23. Alptekin Ö, Tükel SS, Yildirim D, Alagöz D. Covalent immobilization of catalase onto spacer-arm attached modified florisil: characterization and application to batch and plug-flow type reactor systems. Enzym Microb Technol 2011;49: 547–54.
  • 24. Axen R, Drevin H, Carlsson J. Preparation of modified agarose gels containing thiol groups. Acta Chem Scand B 1975;29: 471–4.
  • 25. Bilgin R, Yalcin MS, Yildirim D. Optimization of covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports for cellulose hydrolysis, in buffer and ionic liquids/buffer media. Artif Cells Nanomed Biotechnol 2016;44:1276–84.
  • 26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265–75.
  • 27. Srinivasa Rao M, Chellapandian M, Krishnan MRV. Immobilization of urease on gelatin-poly (HEMA) copolymer preparation and characterization. Bioprocess Eng 1995;13: 211–4.
  • 28. Alagöz D, Toprak A, Yildirim D, Tükel SS, Fernandez-Lafuente R. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzym Microb Technol 2021;144: 109739.
  • 29. Mostafa FA, El Aty AAA, Hassan ME, Awad GEA. Immobilization of xylanase on modified grafted alginate polyethyleneimine bead based on impact of sodium cation effect. Int J Biol Macromol 2019;140:1284–95.
  • 30. Tülek A, Yildirim D, Aydın D, Binay B. Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for environmentally friendly cotton bleaching process. Colloids Surf, B 2021;202:111672.
  • 31. Kumar S, Dwevedi A, Kayastha AM. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. J Mol Catal B Enzym 2009;58:138–45.
  • 32. Kumar S, Kansal A, Kayastha AM. Immobilization of jack bean (Canavalia ensiformis) urease on gelatin and its characterization. Orient Pharm Exp Med 2005;5:43–7.
  • 33. Danial EN, Hamza AH, Mahmoud RH. Characteristics of immobilized urease on grafted alginate bead systems. Braz Arch Biol Technol 2015;58:147–53.
  • 34. Karim A, Bibi Z, Rehman HU, Aman A, Qader SAU, Rashid MH. Single step immobilization of CMCase within agarose gel matrix: kinetics and thermodynamic studies. Colloids Surf, B 2021;200:111583.
  • 35. Dogac YI, Teke M. Synthesis and characterisation of biocompatible polymer-conjugated magnetic beads for enhancement stability of urease. Appl Biochem Biotechnol 2016; 179:94–110.
  • 36. Jamwal S, Ranote S, Dautoo U, Chauhan GS. Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation. Int J Biol Macromol 2020;158: 521–9.
  • 37. Ferreira MM, Santiago FLB, da Silva NAG, Luiz JHH, Fernand ́ez- Lafuente R, Mendes AA, et al. Different strategies to immobilize lipase from Geotrichum candidum: kinetic and thermodynamic studies. Process Biochem 2018;67:55–63.
  • 38. Ulu A. Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization. J Mater Sci 2020;55: 6130–44.
  • 39. Zhang L, Du Y, Song J, Qi H. Biocompatible magnetic nanoparticles grafted by poly(carboxybetaine acrylamide) for enzyme immobilization. Int J Biol Macromol 2018;118:1004–12.
  • 40. Krishna BL, Singh AN, Patra S, Dubey VK. Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochem 2011;46:1486–91.
  • The online version of this article offers supplementary material (https://doi.org/10.1515/tjb-2021-0264).
APA GÜLESCI N, YÜCEBILGIÇ G, Yildirim D (2022). Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. , 501 - 509. 10.1515/tjb-2021-0264
Chicago GÜLESCI NURI,YÜCEBILGIÇ GÜZIDE,Yildirim Deniz Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. (2022): 501 - 509. 10.1515/tjb-2021-0264
MLA GÜLESCI NURI,YÜCEBILGIÇ GÜZIDE,Yildirim Deniz Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. , 2022, ss.501 - 509. 10.1515/tjb-2021-0264
AMA GÜLESCI N,YÜCEBILGIÇ G,Yildirim D Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. . 2022; 501 - 509. 10.1515/tjb-2021-0264
Vancouver GÜLESCI N,YÜCEBILGIÇ G,Yildirim D Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. . 2022; 501 - 509. 10.1515/tjb-2021-0264
IEEE GÜLESCI N,YÜCEBILGIÇ G,Yildirim D "Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease." , ss.501 - 509, 2022. 10.1515/tjb-2021-0264
ISNAD GÜLESCI, NURI vd. "Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease". (2022), 501-509. https://doi.org/10.1515/tjb-2021-0264
APA GÜLESCI N, YÜCEBILGIÇ G, Yildirim D (2022). Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Türk Biyokimya Dergisi, 47(4), 501 - 509. 10.1515/tjb-2021-0264
Chicago GÜLESCI NURI,YÜCEBILGIÇ GÜZIDE,Yildirim Deniz Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Türk Biyokimya Dergisi 47, no.4 (2022): 501 - 509. 10.1515/tjb-2021-0264
MLA GÜLESCI NURI,YÜCEBILGIÇ GÜZIDE,Yildirim Deniz Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Türk Biyokimya Dergisi, vol.47, no.4, 2022, ss.501 - 509. 10.1515/tjb-2021-0264
AMA GÜLESCI N,YÜCEBILGIÇ G,Yildirim D Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Türk Biyokimya Dergisi. 2022; 47(4): 501 - 509. 10.1515/tjb-2021-0264
Vancouver GÜLESCI N,YÜCEBILGIÇ G,Yildirim D Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Türk Biyokimya Dergisi. 2022; 47(4): 501 - 509. 10.1515/tjb-2021-0264
IEEE GÜLESCI N,YÜCEBILGIÇ G,Yildirim D "Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease." Türk Biyokimya Dergisi, 47, ss.501 - 509, 2022. 10.1515/tjb-2021-0264
ISNAD GÜLESCI, NURI vd. "Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease". Türk Biyokimya Dergisi 47/4 (2022), 501-509. https://doi.org/10.1515/tjb-2021-0264