href="https://fonts.googleapis.com/css2?family=Work+Sans:ital,wght@0,200;0,300;0,400;0,500;0,600;0,700;1,200;1,300;1,400;1,500;1,600;1,700&display=swap" rel="stylesheet">
Yıl: 2023 Cilt: 27 Sayı: 1 Sayfa Aralığı: 86 - 96 Metin Dili: İngilizce DOI: 10.29228/jrp.292 İndeks Tarihi: 30-05-2023

Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells

Öz:
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease system (CRISPR/Cas9) has emerged as a powerful toolbox for cancer therapy, serving as a gene fixed-point knock-out method. However, suitable gene carrier systems are urgently needed to encapsulate the CRISPR/Cas9 system and to improve the uptake into the cancer cells for anti-cancer therapy. In cancer therapy, breast cancer stem cells should be also targeted besides tumor cells. In this study, we prepared chitosan/CRISPR-Cas9/protamine nanoplexes and performed in vitro characterization. The results showed that the chitosan/protamine complex increased the zeta potential of the VEGF CRISPR/Cas9 plasmid from negative to positive. In vitro cell culture studies showed that VEGF silencing efficiency was 46.19% and 30.2% in MCF-7 and MCF-7s, respectively, after 7 days. The invasion capacity of cancer cells decreased significantly for both cell types. The results indicate that chitosan/VEGF CRISPR/Cas9 plasmid/protamine complexes can be used to reduce VEGF expression, leading to a decrease in the invasion capacity of breast cancer as well as breast cancer stem cells and providing proof of concept for more advanced studies, including in vivo studies, of this system.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA: a cancer journal for clinicians. 2021;71(1):7-33.[CrossRef]
  • [2] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3):209-49.[CrossRef]
  • [3] Azamjah N, Soltan-Zadeh Y, Zayeri F. Global Trend of Breast Cancer Mortality Rate: A 25-Year Study. Asian Pacific journal of cancer prevention: APJCP. 2019;20(7):2015-20.[CrossRef]
  • [4] Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, et al. Gene therapy: A promising approach for breast cancer treatment. Cell biochemistry and function. 2022;40(1):28-48.[CrossRef]
  • [5] Stoff-Khalili MA, Dall P, Curiel DT. Gene therapy for carcinoma of the breast. Cancer gene therapy. 2006;13(7):633-47.[CrossRef]
  • [6] Mao Y, Liu X, Song Y, Zhai C, Zhang L. VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis. PloS one. 2018;13(8):e0201395.[CrossRef]
  • [7] Bai Y, Bai L, Zhou J, Chen H, Zhang L. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cellular immunology. 2018;323:19-32. [CrossRef]
  • [8] Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Frontiers in physiology. 2014;5:75.[CrossRef]
  • [9] Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020 May;77(9):1745-1770.[CrossRef]
  • [10] Karsten MM, Beck MH, Rademacher A, Knabl J, Blohmer JU, Jückstock J, et al. VEGF-A165b levels are reduced in breast cancer patients at primary diagnosis but increase after completion of cancer treatment. Scientific reports. 2020;10(1):3635.[CrossRef]
  • [11] Wang Y, Li C, Li Y, Zhu Z. Involvement of breast cancer stem cells in tumor angiogenesis. Oncol Lett. 2017;14(6):8150-5. [CrossRef]
  • [12] Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti angiogenic gene therapy for cancer (Review). Oncol Lett. 2018;16(1):687-702.[CrossRef]
  • [13] Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Advances in wound care. 2014;3(10):647-61.[CrossRef]
  • [14] Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. Journal of Cancer. 2020;11(15):4474-94. [CrossRef]
  • [15] Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, et al. Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers. 2022;14(4).[CrossRef]
  • [16] Prager BC, Xie Q, Bao S, Rich JN. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell stem cell. 2019;24(1):41-53.[CrossRef]
  • [17] Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. The international journal of biochemistry & cell biology. 2012;44(12):2144-51.[CrossRef]
  • [18] Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Current protocols in pharmacology. 2013; Chapter 14:Unit 14.25.[CrossRef]
  • [19] Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science. 2018;25(1):20.[CrossRef]
  • [20] Zhou H-M, Zhang J-G, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduction and Targeted Therapy. 2021;6(1):62.[CrossRef]
  • [21] Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. Journal of Cellular Physiology. 2019;234(6):8381-95.[CrossRef]
  • [22] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(7):3983-8.[CrossRef]
  • [23] Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development. 2003;17(10):1253-70.[CrossRef]
  • [24] Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and In vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell Properties. Cancer Research. 2005;65(13):5506-11. [CrossRef]
  • [25] Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Frontiers in Oncology. 2020;10.[CrossRef]
  • [26] Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances, and prospects. Signal Transduction and Targeted Therapy. 2020;5(1):1.[CrossRef]
  • [27] Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Frontiers in Genetics. 2021;12.[CrossRef]
  • [28] Erdem Çakmak F, Özbaş Turan S, Şalva E, Akbuğa J. Comparison of VEGF gene silencing efficiencies of chitosan and protamine complexes containing shRNA. Cell Biology International. 2014;38(11):1260-70.[CrossRef]
  • [29] Salva E, Kabasakal L, Eren F, Ozkan N, Cakalağaoğlu F, Akbuğa J. Local delivery of chitosan/VEGF siRNA nanoplexes reduces angiogenesis and growth of breast cancer in vivo. Nucleic acid therapeutics. 2012;22(1):40-8.[CrossRef]
  • [30] Şalva E, Turan SÖ, Eren F, Akbuğa J. The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. International Journal of Pharmaceutics. 2015;478(1):147-54. [CrossRef]
  • [31] Li Y, Wang W, Zhang Y, Wang X, Gao X, Yuan Z, et al. Chitosan sulfate inhibits angiogenesis via blocking the VEGF/VEGFR2 pathway and suppresses tumor growth in vivo. Biomaterials science. 2019;7(4):1584-97.[CrossRef]
  • [32] Salva E, Kabasakal L, Eren F, Cakalağaoğlu F, Ozkan N, Akbuğa J. Chitosan/short hairpin RNA complexes for vascular endothelial growth factor suppression invasive breast carcinoma. Oligonucleotides. 2010;20(4):183-90.[CrossRef]
  • [33] Cao Y, Tan YF, Wong YS, Liew MWJ, Venkatraman S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Marine drugs. 2019;17(6).[CrossRef]
  • [34] Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A, et al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC advances. 2016;6(112):110951-63.[CrossRef]
  • [35] Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):83-91.[CrossRef]
  • [36] Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine. 2012; 7:5577-91.[CrossRef]
  • [37] Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics. 2021;4(9):2100040.[CrossRef]
  • [38] Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nature Nanotechnology. 2021;16(6):630-43.[CrossRef]
  • [39] Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology. 2017;35(3):222-9. [CrossRef]
  • [40] Li P, Liu D, Miao L, Liu C, Sun X, Liu Y, et al. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. International journal of nanomedicine. 2012; 7:925.[CrossRef]
  • [41] Nakamura K, Terai Y, Tanabe A, Ono YJ, Hayashi M, Maeda K, et al. CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncology reports. 2017;37(6):3189-200.[CrossRef]
  • [42] Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Research. 2008;10(3):R52.[CrossRef]
  • [43] Wang R, Lv Q, Meng W, Tan Q, Zhang S, Mo X, et al. Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. Journal of thoracic disease. 2014;6(6):829-37.[CrossRef]
  • [44] Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, et al. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget. 2015;6(42):44191-206.[CrossRef]
  • [45] Lombardo Y, de Giorgio A, Coombes CR, Stebbing J, Castellano L. Mammosphere formation assay from human breast cancer tissues and cell lines. Journal of visualized experiments : JoVE. 2015(97).[CrossRef]
  • [46] Shaw FL, Harrison H, Spence K, Ablett MP, Simões BM, Farnie G, et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. Journal of mammary gland biology and neoplasia. 2012;17(2):111-7.[CrossRef]
APA Canak Ipek T, Avci-Adali M, Ekentok C, Salva E, OZBAS TURAN S (2023). Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. , 86 - 96. 10.29228/jrp.292
Chicago Canak Ipek Tuba,Avci-Adali Meltem,Ekentok Ceyda,Salva Emine,OZBAS TURAN SUNA Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. (2023): 86 - 96. 10.29228/jrp.292
MLA Canak Ipek Tuba,Avci-Adali Meltem,Ekentok Ceyda,Salva Emine,OZBAS TURAN SUNA Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. , 2023, ss.86 - 96. 10.29228/jrp.292
AMA Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. . 2023; 86 - 96. 10.29228/jrp.292
Vancouver Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. . 2023; 86 - 96. 10.29228/jrp.292
IEEE Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S "Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells." , ss.86 - 96, 2023. 10.29228/jrp.292
ISNAD Canak Ipek, Tuba vd. "Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells". (2023), 86-96. https://doi.org/10.29228/jrp.292
APA Canak Ipek T, Avci-Adali M, Ekentok C, Salva E, OZBAS TURAN S (2023). Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. Journal of research in pharmacy (online), 27(1), 86 - 96. 10.29228/jrp.292
Chicago Canak Ipek Tuba,Avci-Adali Meltem,Ekentok Ceyda,Salva Emine,OZBAS TURAN SUNA Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. Journal of research in pharmacy (online) 27, no.1 (2023): 86 - 96. 10.29228/jrp.292
MLA Canak Ipek Tuba,Avci-Adali Meltem,Ekentok Ceyda,Salva Emine,OZBAS TURAN SUNA Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. Journal of research in pharmacy (online), vol.27, no.1, 2023, ss.86 - 96. 10.29228/jrp.292
AMA Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. Journal of research in pharmacy (online). 2023; 27(1): 86 - 96. 10.29228/jrp.292
Vancouver Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells. Journal of research in pharmacy (online). 2023; 27(1): 86 - 96. 10.29228/jrp.292
IEEE Canak Ipek T,Avci-Adali M,Ekentok C,Salva E,OZBAS TURAN S "Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells." Journal of research in pharmacy (online), 27, ss.86 - 96, 2023. 10.29228/jrp.292
ISNAD Canak Ipek, Tuba vd. "Chitosan-based delivery of CRISPR-Cas9 plasmid in breast cancer stem cells". Journal of research in pharmacy (online) 27/1 (2023), 86-96. https://doi.org/10.29228/jrp.292