Yıl: 2022 Cilt: 32 Sayı: 2 Sayfa Aralığı: 69 - 74 Metin Dili: İngilizce DOI: 10.4999/uhod.226162 İndeks Tarihi: 31-05-2023

The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent

Öz:
Recent studies have shown that the use of metformin prevents the development and spread of cancer. Metformin may show this effect by increasing SIK1 and SIK2 gene expression. For this purpose, MCF-7 cells cultured in appropriate media were divided into 8 groups (1) control, (2) 10 ng/mL TGF-β1, (3) 1.25 mM Metformin, (4) 2.5mM Metformin, (5) 20mM Metformin, (6) 1.25 mM Metform - in+10 ng/ml TGF-β1, (7) 2.5mM Metformin+10 ng/ml TGF-β1 and (8) 20mM Metformin+10 ng/ml TGF-β1 doses were administered, respectively. PCR was performed for SIK1 and SIK2 genes, with GAPDH being the reference gene. Application of 10 ng/ml TGF- β1 to MCF-7 cell significantly increased expression level of SIK1 mRNA by 1.6 fold. In non-invasive (TGF- β1 not administered) MCF-7 cell, 2.5 mM and 20 mM metformin increased expression levels of SIK1 mRNA by 1.8, 3.4 fold and SIK2 mRNA by 1.6 and 3.3 fold respectively. In invasive (TGF- β1 administered) MCF-7 cell, 1.25, 2.5 and 20 mM metformin increased expression levels of SIK1 mRNA by 3.5, 3.7, 4 fold; and SIK2 mRNA by 1.9, 2.4, 3.5 fold, respectively. Metformin increased SIK1 and SIK2 gene expression dose-dependently in non-invasive and invasive MCF-7 cells, more significantly in invasive ones. The increase in the SIK1 gene was greater than in SIK2. In the light of these results, investigating the effects of metformin on SIK1 and SIK2 genes in different TGF- β1 sensitive cancer types may open new doors for cancer treatment.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 71: 7-33, 2021.
  • 2. Redig AJ, McAllister SS. Breast cancer as a systemic dis - ease: a view of metastasis. J Intern Med 274: 113-126, 2013.
  • 3. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29: 117-129, 2001.
  • 4. Massague J. TGF-b signal transduction. Annu Rev Biochem 67: 753-791, 1998.
  • 5. Lönn P, Vanlandewijck M, Raja E, et al. Transcriptional in - duction of salt-inducible kinase 1 by transforming growth fac- tor β leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase. J Biol Chem 287: 12867-12878, 2012.
  • 6. Horike N, Takemori H, Katoh Y, et al. Adipose-specific ex - pression, phosphorylation of Ser794 in insulin receptor sub - strate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278: 18440-18447, 2003.
  • 7. Hashimoto YK, Satoh T, Okamoto M, Takemori H. Impor - tance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Bio - chem 104: 1724-1739, 2008.
  • 8. Takemori H, Kajimura J, Okamoto M. TORC-SIK cascade regulates CREB activity through the basic leucine zipper do - main. FEBS J 274: 3202-3209, 2007.
  • 9. Cheng H, Liu P, Wang ZC, et al. SIK1 couples LKB1 to p53 dependent anoikis and suppresses metastasis. Sci Signal 2(80): ra35, 2009.
  • 10. Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 5: 150, 2020.
  • 11. Rodón L, Svensson RU, Wiater E, et al. The CREB coactiva - tor CRTC2 promotes oncogenesis in LKB1-mutant non-small cell lung cancer. Sci Adv 5(7): eaaw6455, 2019.
  • 12. Zohrap N, Saatci Ö, Ozes B, et al. SIK2 attenuates prolif - eration and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget 9: 21876-21892, 2018.
  • 13. Alexander GC, Sehgal NL, Moloney RM, Stafford RS. Nation- al trends in treatment of type 2 diabetes mellitus, 1994-2007. Arch Intern Med 168: 2088-2094, 2008.
  • 14. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304-1305, 2005.
  • 15. Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia 24: 111-123, 2019.
  • 16. Salis O, Bedir A, Ozdemir T, et al. The relationship between anticancer effect of metformin and the transcriptional regula - tion of certain genes (CHOP, CAV-1, HO-1, SGK-1 and Par- 4) on MCF-7 cell line. Eur Rev Med Pharmacol Sci 18: 1602- 1609, 2014.
  • 17. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167-1174, 2001.
  • 18. Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation ini - tiation in breast cancer cells. Cancer Res 67: 10804-10812, 2007.
  • 19. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Met - formin in cancer therapy: a new perspective for an old antidia- betic drug? Mol Cancer Ther 9: 1092-1099, 2010.
  • 20. Zakikhani M, Blouin MJ, Piura E, Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and pro- liferation in breast cancer cells. Breast Cancer Res Treat 123: 271-279, 2010.
  • 21. Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor sup - pressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101: 3329-3335, 2004.
  • 22. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy re - sponse to control cell growth and survival. Cell 115: 577-590, 2003.
  • 23. Zong H, Yin B, Zhou H, et al. Inhibition of mTOR pathway attenuates migration and invasion of gallbladder cancer via EMT inhibition. Mol Biol Rep 41: 4507-4512, 2014.
  • 24. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335-348, 2004.
  • 25. Takemori H, Okamoto M. Regulation of CREB-mediated gene expression by salt inducible kinase. J Steroid Biochem Mol Biol 108: 287-291, 2008.
  • 26. Du WQ, Zheng JN, Pei DS. The diverse oncogenic and tumor suppressor roles of salt-inducible kinase (SIK) in cancer Ex - pert Opin Ther Targets 20: 477-485, 2016.
  • 27. Chen JL, Chen F, Zhang TT, Liu NF. Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med 37: 1601-1610, 2016.
  • 28. Qu C, He D, Lu X, et al. Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/ β-catenin activation. J Hepatol 64: 1076-1089, 2016.
  • 29. Kumagai A, Horike N, Satoh Y, et al. A potent inhibitor of SIK2, 3, 3’, 7-trihydroxy-4’-methoxyflavon (4’-O-methylfise - tin), promotes melanogenesis in B16F10 melanoma cells. PLoS One 6(10): e26148, 2011.
  • 30. Selvik LK, Rao S, Steigedal TS, et al. Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells. PLoS One 9(11): e112485, 2014.
  • 31. Yao YH, Cui Y, Qiu XN, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresist - ance of non-small cell lung cancer cells. Chin J Cancer 35: 50, 2016.
  • 32. Eneling K, Brion L, Pinto V, et. al. Salt-inducible kinase 1 reg- ulates E-cadherin expression and intercellular junction stabil - ity. FASEB J 26: 3230-3239, 2012.
  • 33. Lin X, Takemori H, Katoh Y, et al. Salt-inducible kinase is in- volved in the ACTH/cAMP-dependent protein kinase signal - ing in Y1 mouse adrenocortical tumor cells. Mol Endocrinol 15: 1264-76, 2001.
  • 34. Charoenfuprasert S, Yang YY, Lee YC, et al. Identification of salt-inducible kinase 3 as a novel tumor antigen associated with tumorigenesis of ovarian cancer. Oncogene 30: 3570- 3584, 2011.
  • 35. Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, et al. SIK2 is a centrosome kinase required for bipolar mitotic spin- dle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18: 109-121, 2010.
APA ÇAKMAK E, BEDIR A, TUNÇEL Ö (2022). The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. , 69 - 74. 10.4999/uhod.226162
Chicago ÇAKMAK ESER,BEDIR ABDULKERIM,TUNÇEL ÖZGÜR KORHAN The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. (2022): 69 - 74. 10.4999/uhod.226162
MLA ÇAKMAK ESER,BEDIR ABDULKERIM,TUNÇEL ÖZGÜR KORHAN The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. , 2022, ss.69 - 74. 10.4999/uhod.226162
AMA ÇAKMAK E,BEDIR A,TUNÇEL Ö The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. . 2022; 69 - 74. 10.4999/uhod.226162
Vancouver ÇAKMAK E,BEDIR A,TUNÇEL Ö The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. . 2022; 69 - 74. 10.4999/uhod.226162
IEEE ÇAKMAK E,BEDIR A,TUNÇEL Ö "The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent." , ss.69 - 74, 2022. 10.4999/uhod.226162
ISNAD ÇAKMAK, ESER vd. "The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent". (2022), 69-74. https://doi.org/10.4999/uhod.226162
APA ÇAKMAK E, BEDIR A, TUNÇEL Ö (2022). The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. Uluslararası Hematoloji-Onkoloji Dergisi, 32(2), 69 - 74. 10.4999/uhod.226162
Chicago ÇAKMAK ESER,BEDIR ABDULKERIM,TUNÇEL ÖZGÜR KORHAN The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. Uluslararası Hematoloji-Onkoloji Dergisi 32, no.2 (2022): 69 - 74. 10.4999/uhod.226162
MLA ÇAKMAK ESER,BEDIR ABDULKERIM,TUNÇEL ÖZGÜR KORHAN The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. Uluslararası Hematoloji-Onkoloji Dergisi, vol.32, no.2, 2022, ss.69 - 74. 10.4999/uhod.226162
AMA ÇAKMAK E,BEDIR A,TUNÇEL Ö The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. Uluslararası Hematoloji-Onkoloji Dergisi. 2022; 32(2): 69 - 74. 10.4999/uhod.226162
Vancouver ÇAKMAK E,BEDIR A,TUNÇEL Ö The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent. Uluslararası Hematoloji-Onkoloji Dergisi. 2022; 32(2): 69 - 74. 10.4999/uhod.226162
IEEE ÇAKMAK E,BEDIR A,TUNÇEL Ö "The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent." Uluslararası Hematoloji-Onkoloji Dergisi, 32, ss.69 - 74, 2022. 10.4999/uhod.226162
ISNAD ÇAKMAK, ESER vd. "The Effect of Metformin on SIK1 and SIK2 in MCF-7 Cell as an Anticancer Agent". Uluslararası Hematoloji-Onkoloji Dergisi 32/2 (2022), 69-74. https://doi.org/10.4999/uhod.226162