Yıl: 2023 Cilt: 15 Sayı: 2 Sayfa Aralığı: 160 - 171 Metin Dili: İngilizce DOI: 10.4274/jcrpe.galenos.2023.2022-10-14 İndeks Tarihi: 31-05-2023

Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism

Öz:
Objective: Idiopathic hypogonadotropic hypogonadism (IHH) is classified into two groups-Kalman syndrome and normosmic IHH (nIHH). Half of all cases can be explained by mutations in >50 genes. Targeted gene panel testing with nexrt generation sequencing (NGS) is required for patients without typical phenotypic findings. The aim was to determine the genetic etiologies of patients with IHH using NGS, including 54 IHH-associated genes, and to present protein homology modeling and protein stability analyzes of the detected variations. Methods: Clinical and demographic data of 16 patients (eight female), aged between 11.6-17.8 years, from different families were assessed. All patients were followed up for a diagnosis of nIHH, had normal cranial imaging, were without anterior pituitary hormone deficiency other than gonadotropins, had no sex chromosome anomaly, had no additional disease, and underwent genetic analysis with NGS between the years 2008-2021. Rare variants were classified according to the variant interpretation framework of the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology. Changes in protein structure caused by variations were modeled using RoseTTAFold and changes in protein stability resulting from variation were analyzed. Results: Half of the 16 had no detectable variation. Three (18.75%) had a homozygous (pathogenic) variant in the GNRHR gene, one (6.25%) had a compound heterozygous [likely pathogenic-variants of uncertain significance (VUS)] variant in PROK2 and four (25%) each had a heterozygous (VUS) variant in HESX1, FGF8, FLRT3 and DMXL2. Protein models showed that variants interpreted as VUS according to ACMG could account for the clinical IHH. Conclusion: The frequency of variation detection was similar to the literature. Modelling showed that the variant in five different genes, interpreted as VUS according to ACMG, could explain the clinical IHH.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormonereleasing hormone neurons. Nature 1989;338:161-N164.
  • 2. Wray S. From nose to brain: development of gonadotrophin-releasing hormone-1 neurones. J Neuroendocrinol 2010;22:743-753.
  • 3. Pitteloud N, Crowley WF, Ravikumar B. Isolated gonadotropin-releasing hormone deficiency (idiopathic hypogonadotropic hypogonadism). UpTo Date. March, 2023. Available from: https://www.uptodate. com/contents/isolated-gonadotropin-releasing-hormone-deficiencyidiopathic- hypogonadotropic-hypogonadism
  • 4. Topaloğlu AK. Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. J Clin Res Pediatr Endocrinol 2017;9(Suppl 2):113-122. Epub 2017 Dec 27
  • 5. Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, Chorich LP, Sullivan ME, Choi JH, Cameron RS, Layman LC. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016;437:86-96. Epub 2016 Aug 5
  • 6. Young J, Xu C, Papadakis GE, Acierno JS, Maione L, Hietamäki J, Raivio T, Pitteloud N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr Rev 2019;40:669-710.
  • 7. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 2014;133:1-9.
  • 8. De Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 1997;337:1597-1602.
  • 9. Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 1998;18:14-15.
  • 10. de Roux N, Young J, Brailly-Tabard S, Misrahi M, Milgrom E, Schaison G. The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred. J Clin Endocrinol Metab 1999;84:567-572.
  • 11. Beranova M, Oliveira LM, Bédécarrats GY, Schipani E, Vallejo M, Ammini AC, Quintos JB, Hall JE, Martin KA, Hayes FJ, Pitteloud N, Kaiser UB, Crowley WF Jr, Seminara SB. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2001;86:1580-1588.
  • 12. Beate K, Joseph N, Nicolas de R, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol 2012;2012:147893.
  • 13. Fathi AK, Luo X. Normosmic idiopathic hypogonadotropic hypogonadism: update on the genetic background and future challenges. J Pediatr Endocrinol Metab 2013;26:405-415.
  • 14. Liu Q, Yin X, Li P. Clinical, hormonal, and genetic characteristics of 25 Chinese patients with idiopathic hypogonadotropic hypogonadism. BMC Endocr Disord 2022;22:30.
  • 15. Sykiotis GP, Hoang XH, Avbelj M, Hayes FJ, Thambundit A, Dwyer A, Au M, Plummer L, Crowley WF Jr, Pitteloud N. Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab 2010;95:3019-3027. Epub 2010 Apr 9
  • 16. Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98:236-238. Epub 2013 Aug 28
  • 17. Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez-Miranda LR, Szymborska A, Zauber H, Rudolph IM, Willnow TE, Akalin A, Haucke V, Gerhardt H, Birchmeier C, Kühn R, Krauss M, Diecke S, Pascual JM, Selbach M. Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell 2018;175:239-253. Epub 2018 Sep 6
  • 18. Ancien F, Pucci F, Godfroid M, Rooman M. Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Sci Rep 2018;8:4480.
  • 19. Akbulut E. Investigation of changes in protein stability and substrate affinity of 3CL-protease of SARS-CoV-2 caused by mutations. Genet Mol Biol 2022;45:e20210404.
  • 20. Pak MA, Ivankov DN. Best templates outperform homology models in predicting the impact of mutations on protein stability. Bioinformatics 2022;38:4312-4320.
  • 21. Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 2022;29:1056-1067.
  • 22. Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, Dwyer AA, Giacobini P, Hardelin JP, Juul A, Maghnie M, Pitteloud N, Prevot V, Raivio T, Tena-Sempere M, Quinton R, Young J. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism--pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015;11:547-564.
  • 23. Binder G, Schweizer R, Blumenstock G, Braun R. Inhibin B plus LH vs GnRH agonist test for distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism in boys. Clin Endocrinol (Oxf) 2015;82:100-105. Epub 2014 Oct 23
  • 24. Binder G, Schweizer R, Haber P, Blumenstock G, Braun R. Accuracy of Endocrine Tests for Detecting Hypogonadotropic Hypogonadism in Girls. J Pediatr 2015;167:674-678. Epub 2015 Jun 18
  • 25. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-424. Epub 2015 Mar 5
  • 26. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373:871-876. Epub 2021 Jul 15
  • 27. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:407-410. Epub 2007 May 21
  • 28. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 2020;36:1765-1771.
  • 29. Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010;26:889-895. Epub 2010 Feb 17 30. Pires DE, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014;30:335-342. Epub 2013 Nov 26
  • 31. Pires DE, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 2014;42:314-319. Epub 2014 May 14
  • 32. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 2017;45:229-235.
  • 33. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci 2021;30:60-69. Epub 2020 Sep 11
  • 34. Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. J Mol Biol 2017;429:365- 371. Epub 2016 Dec 10.
  • 35. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose PW. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 2018;34:3755-3758.
  • 36. Amato LGL, Montenegro LR, Lerario AM, Jorge AAL, Guerra Junior G, Schnoll C, Renck AC, Trarbach EB, Costa EMF, Mendonca BB, Latronico AC, Silveira LFG. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur J Endocrinol 2019;181:103-119.
  • 37. Topaloglu AK, Lu ZL, Farooqi IS, Mungan NO, Yuksel B, O’Rahilly S, Millar RP. Molecular genetic analysis of normosmic hypogonadotropic hypogonadism in a Turkish population: identification and detailed functional characterization of a novel mutation in the gonadotropinreleasing hormone receptor gene. Neuroendocrinology 2006;84:301- 308. Epub 2006 Dec 19
  • 38. Ng KL, Li JD, Cheng MY, Leslie FM, Lee AG, Zhou QY. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 2005;308:1923-1927.
  • 39. Kaser A, Winklmayr M, Lepperdinger G, Kreil G. The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep 2003;4:469-473.
  • 40. Bullock CM, Li JD, Zhou QY. Structural determinants required for the bioactivities of prokineticins and identification of prokineticin receptor antagonists. Mol Pharmacol 2004;65:582-588.
  • 41. Magnan C, Migrenne-Li S. Pleiotropic effects of prokineticin 2 in the control of energy metabolism. Biochimie 2021;186:73-81. Epub 2021 Apr 29
  • 42. Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu C. Identification and pharmacological characterization of prokineticin 2 beta as a selective ligand for prokineticin receptor 1. Mol Pharmacol 2005;67:2070-2076.
  • 43. Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2006;2:175. Epub 2006 Sep 1
  • 44. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF Jr, Zhou QY, Pitteloud N. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab 2008;93:3551- 3559. Epub 2008 Jun 17
  • 45. Takagi M, Takahashi M, Ohtsu Y, Sato T, Narumi S, Arakawa H, Hasegawa T. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes. Endocr J 2016;63:405-410. Epub 2016 Jan 15
  • 46. Brickman JM, Clements M, Tyrell R, McNay D, Woods K, Warner J, Stewart A, Beddington RS, Dattani M. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development 2001;128:5189-5199.
  • 47. Carvalho LR, Woods KS, Mendonca BB, Marcal N, Zamparini AL, Stifani S, Brickman JM, Arnhold IJ, Dattani MT. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction. J Clin Invest 2003;112:1192-1201.
  • 48. Newbern K, Natrajan N, Kim HG, Chorich LP, Halvorson LM, Cameron RS, Layman LC. Identification of HESX1 mutations in Kallmann syndrome. Fertil Steril 2013;99:1831-1837. Epub 2013 Mar 1
  • 49. Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ, Joyner AL, Mohammadi M. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev 2006;20:185-198. Epub 2005 Dec 29
  • 50. Amato LGL, Montenegro LR, Lerario AM, Jorge AAL, Guerra Junior G, Schnoll C, Renck AC, Trarbach EB, Costa EMF, Mendonca BB, Latronico AC, Silveira LFG. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur J Endocrinol 2019;181:103-119.
APA Çiftci N, Akinci A, AKBULUT E, çamtosun e, Dundar I, doğan m, KAYAŞ L (2023). Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. , 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
Chicago Çiftci Nurdan,Akinci Aysehan,AKBULUT EKREM,çamtosun emine,Dundar Ismail,doğan mustafa,KAYAŞ LEMAN Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. (2023): 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
MLA Çiftci Nurdan,Akinci Aysehan,AKBULUT EKREM,çamtosun emine,Dundar Ismail,doğan mustafa,KAYAŞ LEMAN Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. , 2023, ss.160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
AMA Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. . 2023; 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
Vancouver Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. . 2023; 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
IEEE Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L "Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism." , ss.160 - 171, 2023. 10.4274/jcrpe.galenos.2023.2022-10-14
ISNAD Çiftci, Nurdan vd. "Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism". (2023), 160-171. https://doi.org/10.4274/jcrpe.galenos.2023.2022-10-14
APA Çiftci N, Akinci A, AKBULUT E, çamtosun e, Dundar I, doğan m, KAYAŞ L (2023). Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Research in Pediatric Endocrinology, 15(2), 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
Chicago Çiftci Nurdan,Akinci Aysehan,AKBULUT EKREM,çamtosun emine,Dundar Ismail,doğan mustafa,KAYAŞ LEMAN Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Research in Pediatric Endocrinology 15, no.2 (2023): 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
MLA Çiftci Nurdan,Akinci Aysehan,AKBULUT EKREM,çamtosun emine,Dundar Ismail,doğan mustafa,KAYAŞ LEMAN Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Research in Pediatric Endocrinology, vol.15, no.2, 2023, ss.160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
AMA Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Research in Pediatric Endocrinology. 2023; 15(2): 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
Vancouver Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Research in Pediatric Endocrinology. 2023; 15(2): 160 - 171. 10.4274/jcrpe.galenos.2023.2022-10-14
IEEE Çiftci N,Akinci A,AKBULUT E,çamtosun e,Dundar I,doğan m,KAYAŞ L "Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism." Journal of Clinical Research in Pediatric Endocrinology, 15, ss.160 - 171, 2023. 10.4274/jcrpe.galenos.2023.2022-10-14
ISNAD Çiftci, Nurdan vd. "Clinical Characteristics and Genetic Analyses of Patients with Idiopathic Hypogonadotropic Hypogonadism". Journal of Clinical Research in Pediatric Endocrinology 15/2 (2023), 160-171. https://doi.org/10.4274/jcrpe.galenos.2023.2022-10-14