Yıl: 2023 Cilt: 28 Sayı: 1 Sayfa Aralığı: 53 - 66 Metin Dili: İngilizce DOI: 10.17482/uumfd.1222084 İndeks Tarihi: 12-10-2023

DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS

Öz:
Electrospun nanofibers are attractive alternatives to traditional adsorbents due to their high surface-to-volume ratio, porosity, and loading capacity. Functionalization of nanofibers with macrocycles can contribute to further enhancement in selective adsorption of ions. In this study, polycaprolactone (PCL) nanofibers were functionalized with a crown ether, namely dibenzo-18-crown-6 (DB18C6), and the potential of the resultant electrospun PCL/DB18C6 nanofibers for selective ion adsorption, particularly the selective recovery for K+, was investigated. The morphology, chemical structure and thermal properties of PCL/DB18C6 nanofibers were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The average diameter of PCL/DB18C6 nanofibers was 529±196 nm. Single-ion adsorption experiments indicated that the adsorption capacity for K+ ion was 137 mg·g−1 and the selectivity sequence was found as K+>Ca2+>Na+. The adsorption selectivity coefficients of K+/Ca2+ and K+/Na+ were calculated respectively as 1.37 and 4.28 for single ion experiments and as 1.13 and 5.11 for mixed ion adsorptions which illustrate that the difference between the adsorption capacities of K+ and Ca2+ decreased in mixed ion adsorption experiments. Overall results demonstrate that the electrospun PCL/DB18C6 nanofibers are amenable for use as polymer adsorbents for the selective ion recovery.
Anahtar Kelime: Electrospinning Nanofibers Dibenzo-18-crown-6 Polycaprolactone Adsorbent

Seçici Katyon Adsorpsiyonu için Dibenzo-18-Taç-6/Polikaprolakton Kompozit Nanolifleri

Öz:
Elektroeğirme yöntemi ile elde edilen nanolif yüzeyler yüksek yüzey alanı, gözeneklilik ve yükleme kapasitesi gibi özellikleri sayesinde geleneksel adsorban malzemelere karşı alternatif olarak dikkat çekmektedirler. Özellikle halkalı makromoleküller ile işlevselleştirilmiş nanolifler, iyonların seçici adsorpsiyonunun daha da geliştirilmesine katkıda bulunabilir. Bu çalışmada, polikaprolakton (PCL) ve dibenzo-18-taç-6 taç eteri (DB18C6) kullanılarak elektroeğirme yöntemi ile PCL/DB18C6 kompozit nanolifleri elde edilmiş ve potasyum başta olmak üzere seçici iyon adsorpsiyonu için potansiyelleri incelenmiştir. PCL/DB18C6 nanoliflerinin morfolojileri, kimyasal yapıları ve ısıl özellikleri taramalı elektron mikroskobu (SEM), Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), X-ışını fotoelektron spektroskopisi (XPS), termogravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetre (DSC) yöntemleriyle analiz edilmiştir. PCL/DB18C6 nanoliflerinin ortalama çapı 529±196 nm olarak hesaplanmıştır. Tek iyon adsorpsiyon deneylerinde K+ için adsorpsiyon kapasitesinin 137 mg·g−1, seçicilik sıralamasının ise K+>Ca2+>Na+ olduğu bulunmuştur. K+/Ca2+ ve K+/Na+ adsorpsiyon seçicilik katsayıları tek iyon adsorpsiyon deneylerinde sırasıyla 1.37 ve 4.28, çoklu iyon adsorpsiyonlarındaysa sırasıyla 1.13 ve 5.11 olarak hesaplanmıştır. Bu durum K+ ve Ca2+ iyonlarının adsorpsiyon kapasiteleri arasındaki farkın çoklu iyon sistemlerinde azaldığını işaret etmektedir. Elde edilen sonuçlar, elektroeğirme yöntemiyle üretilen PCL/DB18C6 nanoliflerinin seçici iyon kazanımı için adsorban malzeme olarak kullanımının uygun olduğunu göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ahmed, H. A., Saleem, P. H., Yasin, S. A. and Saeed, I. A. (2021) A kinetic study of removing methylene blue from aqueous solutions by modified electrospun polyethelene terephthalate nanofibres, Egyptian Journal of Chemistry, 64(6), 2803–2813. doi: 10.21608/EJCHEM.2021.54843.3146.
  • 2. Alexandratos, S. D. and Stine, C. L. (2004) Synthesis of ion-selective polymer-supported crown ethers: A review, Reactive and Functional Polymers, 60, 3–16. doi: 10.1016/j.reactfunctpolym.2004.02.006.
  • 3. Anderson, J. D., Paulsen, E. S. and Dearden, D. V. (2003) Alkali metal binding energies of dibenzo-18-crown-6: Experimental and computational results, International Journal of Mass Spectrometry, 227(1), 63–76. doi: 10.1016/S1387-3806(03)00042-3.
  • 4. Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I. S. and Bechelany, M. (2019) Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications, Applied Materials Today, 17, 1–35. doi: 10.1016/j.apmt.2019.06.015.
  • 5. Bhattacharyya, A. and Goswami, A. (2009). Effect of cation driven loading of dibenzo-18-crown-6 in Nafion-117 membrane on the diffusion and transport behavior of alkali metal ions, The Journal of Physical Chemistry B, 113, 12958–12963. doi: 10.1021/jp9053605.
  • 6. Bhardwaj, N. and Kundu, S. C. (2010) Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, 28(3), 325–347. doi: 10.1016/j.biotechadv.2010.01.004.
  • 7. Buschmann, H.-J., Cleve, E., Denter, U. and Schollmeyer, E. (1997) Determination of complex stabilities with nearly insoluble host molecules. Part II. Complexation of alkali and alkaline earth metal cations with dibenzo crown ethers in aqueous solution, Journal of Physical Organic Chemistry, 10(10), 781–785. doi: 10.1002/(SICI)1099-1395(199710)10:103.0.CO;2.
  • 8. Chen, L.-Q., Wang, Y., Qu, J.-S., Deng, J.-J. and Kang, X.-J. (2015) Selective extraction of catecholamines by packed fiber solid-phase using composite nanofibers composing of polymeric crown ether with polystyrene, Biomedical Chromatography, 29(1), 103–109. doi: 10.1002/bmc.3245.
  • 9. Chen, L. Q., Zhu, X. H., Huang, D. N., Xu, Z., Shen, J. and Zhang, W. Q. (2017) Polystyrene/poly(dibenzo-18-crown-6) composite nanofibers for the selective adsorption of plasma catecholamines, RSC Advances, 7(22), 13263–13271. doi: 10.1039/C7RA00430C.
  • 10. Chen, Y., Huang, F., Li, Z.-T. and Liu, Y. (2018) Controllable macrocyclic supramolecular assemblies in aqueous solution, Science China Chemistry, 61(8), 979–992. doi: 10.1007/s11426-018-9337-4.
  • 11. Cheng, Q., Zhang, Y., Zheng, X., Sun, W., Li, B. T., Wang, D. and Li, Z. (2021) High specific surface crown ether modified chitosan nanofiber membrane by low-temperature phase separation for efficient selective adsorption of lithium, Separation and Purification Technology, 262, 118312. doi: 10.1016/j.seppur.2021.118312.
  • 12. Choi, C. M., Heo, J. and Kim, N. J. (2012) Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model, Chemistry Central Journal, 6(1), 84. doi: 10.1186/1752-153X-6-84.
  • 13. Fang, Y., Deng, Y. and Dehaen, W. (2020) Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly, Coordination Chemistry Reviews, 415, 213313. doi: 10.1016/J.CCR.2020.213313.
  • 14. Glendening, E. D. and Feller, D. (1996) An ab initio investigation of the structure and alkaline earth divalent cation selectivity of 18-crown-6, Journal of the American Chemical Society, 118(25), 6052–6059. doi: 10.1021/ja960469n.
  • 15. Gokel, G. W., Goli, D. M., Minganti, C. and Echegoyen, L. (1983) Clarification of the hole-size cation-diameter relationship in crown ethers and a new method for determining calcium cation homogeneous equilibrium binding constants, Journal of the American Chemical Society, 105(23), 6786–6788. doi: 10.1021/ja00361a003.
  • 16. Guan, L., Kang, H., Liu, W. and Tian, D. (2021) Adsorption behavior of copper ions using crown ether-modified konjac glucomannan, International Journal of Biological Macromolecules, 177, 48–57. doi: 10.1016/J.IJBIOMAC.2021.02.129.
  • 17. Heo, J. (2012) Theoretical studies on selectivity of dibenzo-18-crown-6-ether for alkaline earth divalent cations, Bulletin of the Korean Chemical Society, 33(8), 2669–2674. doi: 10.5012/bkcs.2012.33.8.2669.
  • 18. Hu, C., Li, Z., Hu, Z., Li, Q., Fu, Y. and Chen, Z. (2022) Synthesis of multifunctional crown ether covalent organic nanospheres as stationary phase for capillary electrochromatography, Journal of Chromatography A, 1677, 463323. doi: 10.1016/j.chroma.2022.463323.
  • 19. Islam, M. S., Ang, B. C., Andriyana, A. and Afifi, A. M. (2019) A review on fabrication of nanofibers via electrospinning and their applications, SN Applied Sciences, 1(10), 1248. doi: 10.1007/S42452-019-1288-4.
  • 20. Jackson, D. T., Nelson, P. N. and Booysen, I. N. (2021) Lead ion selective electrodes from dibenzo-18-crown-6 derivatives: An exploratory study, Journal of Molecular Structure, 1227(7), 129575. doi: 10.1016/j.molstruc.2020.129575.
  • 21. Kriz, J., Dybal, J., Makrlik, E. and Budka, J. (2008) Interaction of hydronium ion with dibenzo-18-crown-6 : NMR, IR, and theoretical study, The Journal of Physical Chemistry A, 112, 10236–10243. doi: 10.1021/jp805757d.
  • 22. Kuppan, P.; Sethuraman, S. and Krishnan, U. M. (2013) PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: Optimization, characterization and cell-matrix interactions, Journal of Biomedical Nanotechnology, 9(9), 1540–1555. doi: 10.1166/jbn.2013.1653.
  • 23. Limjuco, L. A., Nisola, G. M., Torrejos, R. E. C., Han, J. W., Song, H. S., Parohinog, K. J., Koo, S., Lee, S.-P. and Chung, W.-J. (2017) Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents, ACS Applied Materials and Interfaces, 9(49), 42862–42874. doi: 10.1021/acsami.7b14858.
  • 24. Liu, Z., Dai, X., Sun, Y. and Liu, Y. (2020) Organic supramolecular aggregates based on water-soluble cyclodextrins and calixarenes, Aggregate, 1(1), 31–44. doi: 10.1002/AGT2.3.
  • 25. Lozano-Sánchez, L. M., Bagudanch, I., Sustaita, A. O., Iturbe-Ek, J., Elizalde, L. E., Garcia-Romeu, M. L. and Elias-Zuniga, A. (2018) Single-point incremental forming of two biocompatible polymers: An insight into their thermal and structural properties, Polymers, 10(4), 391. doi: 10.3390/polym10040391.
  • 26. Maleknia, S. and Brodbelt, J. (1992) Gas-phase selectivities of crown ethers for alkali metal ion complexation, Journal of the American Chemical Society, 114(11), 4295–4298. doi: 10.1021/ja00037a038.
  • 27. Nicoli, F., Baroncini, M., Silvi, S., Groppi, J. and Credi, A. (2021) Direct synthetic routes to functionalised crown ethers, Organic Chemistry Frontiers, 8(19), 5531–5549. doi: 10.1039/D1QO00699A.
  • 28. Nisola, G. M., Parohinog, K. J., Torrejos, R. E. C., Koo, S., Lee, S.-P., Kim, H. and Chung, W.-J. (2020) Crown ethers “clicked” on fibrous polyglycidyl methacrylate for selective Li+ retrieval from aqueous sources, Colloids Surfaces A, 596, 124709. doi: 10.1016/j.colsurfa.2020.124709.
  • 29. Patel, H. A., Selberg, J., Salah, D., Chen, H., Liao, Y., Nalluri, S. K. M., Farha, O. K., Snurr, R. Q., Rolandi, M. and Stoddart, J. F. (2018) Proton conduction in Tröger’s base-linked poly(crown ether)s, ACS Applied Materials and Interfaces, 10, 25303–25310. doi: 10.1021/acsami.8b05532.
  • 30. Pedersen, C. J. (1967) Cyclic polyethers and their complexes with metal salts, Journal of the American Chemical Society, 89(10), 2495–2496. doi: 10.1021/ja00986a052.
  • 31. Pereao, O., Bode Aluko, C., Laatikainen, K., Nechaev, A., and Petrik, L. (2019) Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal, Journal of Polymers and the Environment, 27, 1843–1860. doi: 10.1007/s10924-019-01497-w.
  • 32. Permyakova, E. S., Kiryukhantsev-Korneev, P. V., Gudz, K. Y., Konopatsky, A. S., Polcak, J., Zhitnyak, I. Y., Gloushankova, N. A., Shtansky, D. V., and Manakhov, A. M. (2019) Comparison of different approaches to surface functionalization of biodegradable polycaprolactone scaffolds, Nanomaterials, 9(12), 1769. doi: 10.3390/nano9121769.
  • 33. Rounaghi, G. H. and Mofazzeli, F. (2005) Study of complex formation between dicyclohexano-18-crown-6 (DCH18C6) with Mg2+, Ca2+, Sr2+, and Ba2+ cations in methanol-water binary mixtures using conductometric method, Journal of Inclusion Phenomena, 51(3) 205–210. doi: 10.1007/s10847-004-5691-z.
  • 34. Sahu, P., Ali, S. M. and Singh, J. K. (2014) Structural and dynamical properties of Li+-dibenzo-18-crown-6 (DB18C6) complex in pure solvents and at the aqueous-organic interface, Journal of Molecular Modeling, 20, 2413. doi: 10.1007/s00894-014-2413-3.
  • 35. Salehi, M., Sharafoddinzadeh, D., Mokhtari, F., Esfandarani, M. S. and Karami, S. (2021) Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater, Clean Technologies and Recycling, 1(1), 1–33. doi: 10.3934/ctr.2021001.
  • 36. Shu, Y., Wang, J., Qian, C., Shi, Q., Lv, R., Wu, H. and Chen, M. (2022) Dibenzo-18-crown-6/polyacrylonitrile (PAN) nanofibers for metal ions adsorption: Adsorption studies for Na+ and K+, Polymer Bulletin, 79, 6275–6288. doi: 10.1007/S00289-021-03806-7.
  • 37. Stergiou, A., Stangel, C., Canton-Vitoria, R., Kitaura, R. and Tagmatarchis, N. (2021) An ion-selective crown ether covalently grafted onto chemically exfoliated MoS2 as a biological fluid sensor, Nanoscale, 13(19), 8948–8957. doi: 10.1039/d1nr00404b.
  • 38. Tas, S., Kaynan, O., Ozden-Yenigun, E. and Nijmeijer, K. (2016) Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations, RSC Advances, 6(5), 3608–3616. doi: 10.1039/c5ra23214g.
  • 39. Ullah, F., Khan, T. A., Iltaf, J., Anwar, S., Khan, M. F. A., Khan, M. R., Ullah, S., Rehman, M. F. U., Mustaqeem, M., Kotwica-Mojzych, K. and Mojzych, M. (2022) Heterocyclic crown ethers with potential biological and pharmacological properties: From synthesis to applications, Applied Sciences, 12(3), 1102. doi: 10.3390/app12031102.
  • 40. Wang, C., Zhang, P., Ju, H., Xue, Z., Zhou, X., Mao, L., Shao, F., Zou, X., Jing, Y., Jia, Y. and Sun, J. (2022) Electromigration separation of lithium isotopes: The multiple roles of crown ethers, Chemical Physical Letters, 787, 139265. doi: 10.1016/j.cplett.2021.139265.
  • 41. Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications, Chemical Reviews, 119(8), 5298–5415. doi: 1021/acs.chemrev.8b00593.
  • 42. Yang, Q., Sun, L. X., Gao, W. T., Zhu, Z. Y., Gao, X., Zhang, Q. G., Zhu, A. M. and Liu, Q. L. (2021) Crown ether-based anion exchange membranes with highly efficient dual ion conducting pathways, Journal of Colloid and Interface Science, 604, 492–499. doi: 10.1016/j.jcis.2021.07.043.
  • 43. Yang, X., Wang, J., Guo, H., Liu, L., Xu, W. and Duan, G. (2020) Structural design toward functional materials by electrospinning: A review, E-Polymers, 20(1), 682–712. doi: 10.1515/epoly-2020-0068.
  • 44. Zhang, Y., Wang, F. and Wang, Y. (2021) Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment, Materials Today Communications, 27, 102272. doi: 10.1016/j.mtcomm.2021.102272.
APA Kalaoglu-Altan O (2023). DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. , 53 - 66. 10.17482/uumfd.1222084
Chicago Kalaoglu-Altan Ozlem Ipek DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. (2023): 53 - 66. 10.17482/uumfd.1222084
MLA Kalaoglu-Altan Ozlem Ipek DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. , 2023, ss.53 - 66. 10.17482/uumfd.1222084
AMA Kalaoglu-Altan O DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. . 2023; 53 - 66. 10.17482/uumfd.1222084
Vancouver Kalaoglu-Altan O DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. . 2023; 53 - 66. 10.17482/uumfd.1222084
IEEE Kalaoglu-Altan O "DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS." , ss.53 - 66, 2023. 10.17482/uumfd.1222084
ISNAD Kalaoglu-Altan, Ozlem Ipek. "DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS". (2023), 53-66. https://doi.org/10.17482/uumfd.1222084
APA Kalaoglu-Altan O (2023). DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 53 - 66. 10.17482/uumfd.1222084
Chicago Kalaoglu-Altan Ozlem Ipek DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no.1 (2023): 53 - 66. 10.17482/uumfd.1222084
MLA Kalaoglu-Altan Ozlem Ipek DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.28, no.1, 2023, ss.53 - 66. 10.17482/uumfd.1222084
AMA Kalaoglu-Altan O DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2023; 28(1): 53 - 66. 10.17482/uumfd.1222084
Vancouver Kalaoglu-Altan O DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2023; 28(1): 53 - 66. 10.17482/uumfd.1222084
IEEE Kalaoglu-Altan O "DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28, ss.53 - 66, 2023. 10.17482/uumfd.1222084
ISNAD Kalaoglu-Altan, Ozlem Ipek. "DIBENZO-18-CROWN-6/POLYCAPROLACTONE COMPOSITE NANOFIBERS FOR SELECTIVE ADSORPTION OF CATIONS". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (2023), 53-66. https://doi.org/10.17482/uumfd.1222084