Yıl: 2021 Cilt: 31 Sayı: 2 Sayfa Aralığı: 67 - 78 Metin Dili: İngilizce DOI: 10.4999/uhod.214646 İndeks Tarihi: 01-06-2023

Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology

Öz:
Interferon (IFN) family has a significant impact on both SARS-CoV and SARS-CoV-2. The aim of this current bioinformatics study is to assess IFN-gene family alterations following the SARS-CoV infection in association with the iron metabolism and lymphoid biol - ogy.Gene expression data of human bronchial epithelial cells treated with SARS-CoV for 12, 24, 48 hours were obtained from Array Express (GSE17400). In order to use the obtained data in other targeted analyses,the raw data were normalized by robust multise - quence analysis in accordance with the procedure in the Affy package in R. These data consist of 23344 genes (54675 probe sets). In addition, each gene has three repeated expression data values for 12, 24, 48 hours, respectively. For the 48 hours group,positive reg- ulations of the natural killer (NK) cell activation and NK cell-mediated cytotoxicity, as well as hematopoietic stem cells proliferation,were found to be more significant regard to their nominal p-value, family-wise error rate, and false discovery rate (q-value) calculated by gen set enrichment analysis. The gene sets with nominal (NOM) p-value < 0.01, false discovery rate (FDR) q-value ≤ 1, and familywise error rate (FWER) < 1 considered as significantly correlate between compared groups. Our study exhibited that important IFN genes (IFNAR2, IFNA10, IFNA1, IFNLR1, IFNA21, IFNA4, IFNL2, IFNL1, IFNA16, IFNA17) behave like immune genes that show low expres- sion in 12 hours virus exposure, unlike demonstrate high gene expression at 48 hours virus exposure. Likewise, three IFN genes (IF - NAR1, IFNGR1, IFNG) have high expression levels at the 12 hours exposure and low expressions at the 48 hours virus expression. All of these interferon genes expression were highly correlated and statistically significant (p< 0.05, pearson r-value > 0.8) with exposure time to the virus. These results suggest that hematopoietic stem cell proliferation pathway is affected by the viral SARS-CoV infection.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandem- ic. Acta Biomed 91: 157-160, 2020.
  • 2. Rouse BT, Mueller SN. Host Defenses to Viruses. Clinical Im- munology. Fifth edition. Elsevier, 2019: 365-374.
  • 3. Dantoft W, Robertson KA, Watkins WJ, et al. Metabolic regu- lators nampt and Sirt6 serially participate in the macrophage interferon antiviral cascade. Front Microbiol 10: 355, 2019.
  • 4. Israelow B, Song E, Mao T, et al. Mouse model of SARS- CoV-2 reveals inflammatory role of type I interferon signaling. bioRxiv 2020: 2020.2005.2027.118893, 2020.
  • 5. Hung IF, Lung KC, Tso EY, et al. Triple combination of inter- feron beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open- label, randomised, phase 2 trial. Lancet 395: 1695-1704, 2020.
  • 6. Bert NL, Tan AT, Kunasegaran K, et al. Different pattern of pre-existing SARS-COV-2 specific T cell immunity in SARS-recovered and uninfected individuals. bioRxiv 2020: 2020.2005.2026.115832, 2020.
  • 7. Turk C, Turk S, Temirci ES, et al. In vitro analysis of the re - nin-angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. J Renin Angiotensin Aldosterone Syst 21: 1470320320928872, 2020.
  • 8. Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COV- ID-19. Rev Panam Salud Publica 44: e72, 2020.
  • 9. Yoshikawa T, Hill TE, Yoshikawa N, et al. Dynamic innate im- mune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS One 5: e8729, 2010.
  • 10. de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clus- tering software. Bioinformatics 20: 1453-1454, 2004.
  • 11. Subramanian A, Tamayo P, Mootha VK, et al. Gene set en - richment analysis: a knowledge-based approach for inter - preting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545-15550, 2005.
  • 12. Zuberi K, Franz M, Rodriguez H, et al. GeneMANIA prediction server 2013 update. Nucleic Acids Res 41: 115-122, 2013.
  • 13. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504, 2003.
  • 14. Konno Y, Kimura I, Uriu K, et al. SARS-CoV-2 ORF3b is a po- tent interferon antagonist whose activity is further increased by a naturally occurring elongation variant. bioRxiv 2020: 2020.2005.2011.088179, 2020.
  • 15. Zhang Y, Zhang J, Chen Y, et al. The ORF8 Protein of SARS- CoV-2 mediates immune evasion through potently down - regulating MHC-I. bioRxiv 2020: 2020.2005.2024.111823, 2020.
  • 16. Park A, Iwasaki A. Type I and Type III Interferons - induction, signaling, evasion, and application to combat COVID-19. Cell host & Microbe 27: 870-878, 2020.
  • 17. Duncan CJ, Mohamad SM, Young DF, et al. Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci Transl Med 7: 307ra154, 2015.
  • 18. Shepardson KM, Larson K, Johns LL, et al. IFNAR2 is re - quired for anti-influenza immunity and alters susceptibility to post-influenza bacterial superinfections. Frontiers in immunol- ogy 9: 2589, 2018.
  • 19. Utay NS, Douek DC. Interferons and HIV Infection: The good, the bad, and the ugly. Pathog Immun 1: 107-116, 2016.
  • 20. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Re - ceptor ACE2 is an interferon-stimulated gene in human air - way epithelial cells and is detected in specific cell subsets across tissues. Cell 181: 1016-1035.e1019, 2020.
  • 21. Mordstein M, Neugebauer E, Ditt V, et al. Lambda interferon renders epithelial cells of the respiratory and gastrointesti- nal tracts resistant to viral infections. J Virol 84: 5670-5677, 2010.
  • 22. Prokunina-Olsson L, Alphonse N, Dickenson RE, et al. COV - ID-19 and emerging viral infections: The case for interferon lambda. J Exp Med 217: e20200653, 2020.
  • 23. Egli A, Santer DM, O’Shea D, et al. The impact of the in - terferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 3: e51, 2014.
  • 24. Pizzorno A, Padey B, Julien T, et al. Characterization and treatment of SARS-CoV-2 in nasal and bronchial human air - way epithelia. bioRxiv 2020: 2020.2003.2031.017889, 2020.
  • 25. V’kovski P, Gultom M, Steiner S, et al. Disparate tempera- ture-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. bioRxiv 2020: 2020.2004.2027.062315, 2020.
  • 26. Chua RL, Lukassen S, Trump S, et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol 38: 970-979, 2020.
  • 27. Ivashkiv LB, Donlin LT. Regulation of type I interferon re - sponses. Nat Rev Immunol 14: 36-49, 2014.
  • 28. Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence 5: 270-277, 2014.
  • 29. Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Inter - feron Cytokine Res 35: 252-264, 2015.
  • 30. Major J, Crotta S, Llorian M, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infec- tion. Science 369: 712-717, 2020.
  • 31. Minakshi R, Padhan K, Rani M, et al. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342, 2009.
  • 32. Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron - a metal at the host-pathogen interface. Cellular micro - biology 12: 1691-1702, 2010.
  • 33. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 194: 124-137, 2014.
  • 34. Liu W, Zhang S, Nekhai S, Liu S. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival. Curr Clin Microbiol Rep 2020: 1-7, 2020.
  • 35. Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hy - droxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res 158: 104904, 2020.
  • 36. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 101: 4148-4154, 2003.
  • 37. Chan RY, Seiser C, Schulman HM, et al. Regulation of trans- ferrin receptor mRNA expression. Distinct regulatory features in erythroid cells. Eur J Biochem 220: 683-692, 1994.
  • 38. Mims MP, Prchal JT. Divalent metal transporter 1. Hematol - ogy 10: 339-345, 2005.
  • 39. Abu-Farha M, Thanaraj TA, Qaddoumi MG, et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci 21: 3544, 2020.
  • 40. Yan B, Chu H, Yang D, et al. Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication. Vi- ruses 11: 73, 2019.
  • 41. Mazzon M, Mercer J. Lipid interactions during virus entry and infection. Cellular microbiology 16: 1493-1502, 2014.
  • 42. Dong B, Zhou Q, Zhao J, et al. Phospholipid scramblase 1 potentiates the antiviral activity of interferon. J Virol 78: 8983- 8993, 2004.
  • 43. Chua BA, Ngo JA, Situ K, Morizono K. Roles of phosphati - dylserine exposed on the viral envelope and cell membrane in HIV-1 replication. Cell Commun Signal 17: 132, 2019.
  • 44. di Mauro G, Cristina S, Concetta R, et al. SARS-Cov-2 in - fection: Response of human immune system and possible implications for the rapid test and treatment. Int Immunop - harmacol 84: 106519, 2020.
  • 45. Masselli E, Vaccarezza M, Carubbi C, et al. NK cells: A dou - ble edge sword against SARS-CoV-2. Advances in Biological Regulation 77: 100737, 2020.
  • 46. Eichenberger EM, Soave R, Zappetti D, et al. Incidence, sig- nificance, and persistence of human coronavirus infection in hematopoietic stem cell transplant recipients. Bone Marrow Transplant 54: 1058-1066, 2019.
  • 47. Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overacti- vation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leu - kemia 34: 1726-1729, 2020.
  • 48. Kolb-Maurer A, Goebel W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett 226: 203-207, 2003.
  • 49. Ciftciler R, Ciftciler AE, Haznedaroglu IC. Local bone marrow renin-angiotensin system and COVID-19. UHOD - Int J He - matol Oncol 30: 43-53, 2020.
  • 50. de Bruin AM, Voermans C, Nolte MA. Impact of interferon- gamma on hematopoiesis. Blood 124: 2479-2486, 2014.
  • 51. Morales-Mantilla DE, King KY. The role of interferon-gamma in hematopoietic stem cell development, Homeostasis, and disease. Curr Stem Cell Rep 4: 264-271, 2018.
  • 52. Smith JNP, Zhang Y, Li JJ, et al. Type I IFNs drive hemat - opoietic stem and progenitor cell collapse via impaired pro - liferation and increased RIPK1-dependent cell death during shock-like ehrlichial infection. PLoS Pathog 14: e1007234, 2018.
APA Malkan U, Turk S, Türk C, TEMİRCİ E, Köker İ, Haznedaroglu I (2021). Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. , 67 - 78. 10.4999/uhod.214646
Chicago Malkan Umit Yavuz,Turk Seyhan,Türk Can,TEMİRCİ Elif Sena,Köker İdil,Haznedaroglu Ibrahim C. Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. (2021): 67 - 78. 10.4999/uhod.214646
MLA Malkan Umit Yavuz,Turk Seyhan,Türk Can,TEMİRCİ Elif Sena,Köker İdil,Haznedaroglu Ibrahim C. Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. , 2021, ss.67 - 78. 10.4999/uhod.214646
AMA Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. . 2021; 67 - 78. 10.4999/uhod.214646
Vancouver Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. . 2021; 67 - 78. 10.4999/uhod.214646
IEEE Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I "Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology." , ss.67 - 78, 2021. 10.4999/uhod.214646
ISNAD Malkan, Umit Yavuz vd. "Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology". (2021), 67-78. https://doi.org/10.4999/uhod.214646
APA Malkan U, Turk S, Türk C, TEMİRCİ E, Köker İ, Haznedaroglu I (2021). Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. Uluslararası Hematoloji-Onkoloji Dergisi, 31(2), 67 - 78. 10.4999/uhod.214646
Chicago Malkan Umit Yavuz,Turk Seyhan,Türk Can,TEMİRCİ Elif Sena,Köker İdil,Haznedaroglu Ibrahim C. Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. Uluslararası Hematoloji-Onkoloji Dergisi 31, no.2 (2021): 67 - 78. 10.4999/uhod.214646
MLA Malkan Umit Yavuz,Turk Seyhan,Türk Can,TEMİRCİ Elif Sena,Köker İdil,Haznedaroglu Ibrahim C. Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. Uluslararası Hematoloji-Onkoloji Dergisi, vol.31, no.2, 2021, ss.67 - 78. 10.4999/uhod.214646
AMA Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. Uluslararası Hematoloji-Onkoloji Dergisi. 2021; 31(2): 67 - 78. 10.4999/uhod.214646
Vancouver Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology. Uluslararası Hematoloji-Onkoloji Dergisi. 2021; 31(2): 67 - 78. 10.4999/uhod.214646
IEEE Malkan U,Turk S,Türk C,TEMİRCİ E,Köker İ,Haznedaroglu I "Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology." Uluslararası Hematoloji-Onkoloji Dergisi, 31, ss.67 - 78, 2021. 10.4999/uhod.214646
ISNAD Malkan, Umit Yavuz vd. "Interferon-Gene Family Alterations Following the SARS-Cov Infection in Association with Iron Metabolism and Lymphoid Biology". Uluslararası Hematoloji-Onkoloji Dergisi 31/2 (2021), 67-78. https://doi.org/10.4999/uhod.214646