Yıl: 2023 Cilt: 22 Sayı: 1 Sayfa Aralığı: 1 - 14 Metin Dili: İngilizce DOI: 10.4274/uob.galenos.2022.2022.4.1 İndeks Tarihi: 03-06-2023

Targeted Therapies: A Molecular Overview

Öz:
Cancer remains a major health issue and our understanding of its etiopathogenesis needs to be improved. Cancer cells have specific abilities such as uncontrolled proliferation, differentiation, progression, and metastasis. Improved interpretation of intracellular molecular pathways and the development of new genetic or immunological diagnostic techniques have facilitated novel treatment modalities for cancer. These therapeutic agents generally have antiproliferative properties and regulate molecular mechanisms on the intracellular pathways. Small molecule inhibitors, monoclonal antibodies, and some gene-editing treatments have been suggested due to the discovery of new molecular mechanisms. However, limited and transient efficacy, and drug resistance generated by mutations are among the disadvantages of these treatments. Multi-functional inhibitors have highly side effects, but benefit from greater efficacy and evading resistance while the recent specific inhibitors possess increased potency and less toxicity. Furthermore, the combination of therapeutic modalities may potentiate the outcome. Considering the actual literature, this review summarized targeted therapies for treating cancer patients in urology as an overview.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Pease JE. Designing small molecule CXCR3 antagonists. Expert Opin Drug Discov 2017;12:159-168.
  • 2. Roskoski R Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 2016;103:26-48.
  • 3. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995;267:316-317.
  • 4. Iwahara T, Fujimoto J, Wen D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 1997;14:439-449.
  • 5. Baldanzi G, Graziani A. Physiological signaling and structure of the HGF receptor MET. Biomedicines 2014;3:1-31.
  • 6. Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010;17:77-88.
  • 7. Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015;5:850-859.
  • 8. Threadgill DW, Dlugosz AA, Hansen LA, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 1995;269:230-234.
  • 9. Blobel CP. ADAMs: key components in EGFR signaling and development. Nat Rev Mol Cell Biol 2005;6:32-43.
  • 10. Kiyoi H, Ohno R, Ueda R, et al. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002;21:2555-2563.
  • 11. Auclair D, Yatsula V, Pickett W, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007;21:439-445.
  • 12. Folkman J. Anti-angiogenesis: a new concept for therapy of solid tumors. Ann Surg 1972;175:409-416.
  • 13. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 2019;9:84-104.
  • 14. Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008;7:3129-3140.
  • 15. Keating GM. Axitinib: a review in advanced renal cell carcinoma. Drugs 2015;75:1903-1913.
  • 16. Escudier B, Porta C, Eisen T, et al. The role of tivozanib in advanced renal cell carcinoma therapy. Expert Rev Anticancer Ther 2018;18:1113-1124.
  • 17. Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 2007;356:323-328.
  • 18. Perera TPS, Jovcheva E, Mevellec L, et al. Discovery and pharmacological characterization of JNJ- 42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol Cancer Ther 2017;16:1010-1020.
  • 19. Matsui J, Yamamoto Y, Funahashi Y, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 2008;122:664-671.
  • 20. Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 2017;13:496-511.
  • 21. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018;15:731-747.
  • 22. Quintas-Cardama A, Cortes J. Molecular biology of BCR-ABL1- positive chronic myeloid leukemia. Blood 2009;113:1619-1630.
  • 23. Tanaka S, Baba Y. B cell receptor signaling. Adv Exp Med Biol 2020;1254:23-36.
  • 24. O’Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Ann Rev Med 2015;66:311-328.
  • 25. Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells 2020;9:198.
  • 26. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994;79:573-582.
  • 27. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674.
  • 28. de Bono JS, Giorgi UD, Rodrigues DN, et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res, 2019;25:928-936.
  • 29. Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 2009;15:4799-4805.
  • 30. Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019;4:62.
  • 31. Bai Y, Zhang Z, Cheng L, et al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration- resistant prostate cancer. J Biol Chem 2019;294:9911-9923.
  • 32. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 2017;18:1414.
  • 33. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 2020;52:204-212.
  • 34. Knight T, Luedtke D, Edwards H, et al. A delicate balance - The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 2019;162:250-261.
  • 35. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 2017;16:273-284.
  • 36. Tahir SK, Smith ML, Hessler P, et al. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017;17:399.
  • 37. Pak E, Segal RA. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev Cell 2016;38:333-344.
  • 38. Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev 2019;76:41-50.
  • 39. Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003;29:3-9.
  • 40. Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 2004;40:2217-2229.
  • 41. Kodroń A, Mussulini BH, Pilecka I, Chaci ńska A. The ubiquitin- proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020;163:105248.
  • 42. Dolloff NG. Emerging Therapeutic strategies for overcoming proteasome inhibitor resistance. Adv Cancer Res 2015;127:191-226.
  • 43. Vyas S, Chang P. New PARP targets for cancer therapy. Nat Rev Cancer 2014;14:502-509.
  • 44. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017;355:1152-1158.
  • 45. Jiang X, Li X, Li W, et al. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med 2019;23:2303-2313.
  • 46. Abida W, Patnaik A, Campbell D, et al. Rucaparib in Men with Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol 2020;38:3763-3772.
  • 47. Garg G, Khandelwal A, Blagg BS. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects. Adv Cancer Res 2016;129:51-88.
  • 48. Winer A, Adams S, Mignatti P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures into Future Successes. Mol Cancer Ther 2018;17:1147-1155.
  • 49. Batist G, Patenaude F, Champagne P, et al. Neovastat (AE-941) in refractory renal cell carcinoma patients: report of a phase II trial with two dose levels. Ann Oncol 2002;13:1259-1263.
  • 50. Montgomery RB, Mostaghel EA, Vessella R, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008;68:4447-4454.
  • 51. Fizazi K, Tran N, Fein L, et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med 2017;377:352-360.
  • 52. Ge R, Xu X, Xu P, et al. Degradation of androgen receptor through small molecules for prostate cancer. Curr Cancer Drug Targets 2018;18:652-667.
  • 53. Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med 2019;381:13-24.
  • 54. Armstrong AJ, Szmulewitz RZ, Petrylak DP, et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol 2019;37:2974-2986.
  • 55. Moilanen AM, Riikonen R, Oksala R, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep 2015;5:12007.
  • 56. Ryan C, Wefel JS, Morgans AK. A review of prostate cancer treatment impact on the CNS and cognitive function. Prostate Cancer Prostatic Dis 2020;23:207-219.
  • 57. Ballinger JR. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol 2018;91:20170969.
  • 58. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration- resistant prostate cancer: a randomized, double-blind study. Lancet 2011;377:813-822.
  • 59. Kouidhi S, Elgaaied AB, Chouaib S. Impact of metabolism on T-cell differentiation and function and cross-talk with the tumor microenvironment. Front Immunol 2017;8:270.
  • 60. Kareva I, Hahnfeldt P. The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res 2013;73:2737-2742.
  • 61. Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229-1241.
  • 62. Mineharu Y, Kamran N, Lowenstein PR, Castro MG. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments anti glioma cytotoxic and memory T-cell functions. Mol Cancer Ther 2014;13:3024-3036.
  • 63. Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today 2017;22:796-804.
  • 64. Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via a downstream focus on the tryptophan– kynurenine–aryl hydrocarbon axis. Clin Cancer Res 2019;25:1462-1471.
  • 65. Hargadon, KM, Johnson CE, Williams CJ, et al. Immune checkpoint blockade therapy for cancer: An overview of FDA- approved immune checkpoint inhibitors. Int Immunopharmacol 2018;62:29-39.
  • 66. Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015;372:2509-2520.
  • 67. Antonarakis ES, Piulats JM, Gross-Goupil M, et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J Clin Oncol 2020;38:395-405.
  • 68. Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomized, controlled, phase 3 trial. Lancet Oncol 2019;20:1370-1385.
  • 69. Galsky MD, Arija JAA, Bamias, A, et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomized, placebo-controlled phase 3 trial. Lancet 2020;16:395:1547-1557.
  • 70. Baldini C, Champiat S, Vuagnat P, Massard C. Durvalumab for the management of urothelial carcinoma: a short review on the emerging data and therapeutic potential. Onco Targets Ther 2019;12:2505-2512.
  • 71. Powles T, Park SH, Voog E, et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N Engl J Med 2020;383:1218-1230.
  • 72. Lamb HM, Faulds D. Capromab pendetide. A review of its use as an imaging agent in prostate cancer. Drugs Aging 1998;12:293-304.
  • 73. Alaia C, Boccellino M, Zappavigna S, et al. Ipilimumab for the treatment of metastatic prostate cancer. Expert Opin Biol Ther 2018;18:205-213.
  • 74. Bracarda S, Altavilla A, Hamzaj A, et al. Immunologic checkpoints blockade in renal cell, prostate, and urothelial malignancies. Semin Oncol 2015;42:495-505.
  • 75. Dwary AD, Master S, Patel A, et al. Excellent response to chemotherapy post immunotherapy. Oncotarget 2017;8:91795-91802.
  • 76. Chau V, Bilusic M. Pembrolizumab in combination with axitinib as first-line treatment for patients with renal cell carcinoma (RCC): evidence to date. Cancer Manag Res 2020;12:7321-7330.
  • 77. Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal cell carcinoma. N Engl J Med 219;380:1116-1127.
  • 78. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol 2016;17:e254-e262.
  • 79. Yaghoubi S, Karimi MH, Lotfinia M, et al. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol 2020;235:31-64.
  • 80. Torre BG, Albericio F. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2021;26:627.
  • 81. An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018;36:553-562.
  • 82. Wang Y, Jiang X, Feng F, et al. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020;10:207-238.
  • 83. Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Disco 2020;19:23-38.
  • 84. Corcoran RB, Cheng KA, Hata AN, et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 2013;23:121-128.
  • 85. Van Poppel H, Joniau S, Van Gool SW. Vaccine therapy in patients with renal cell carcinoma. Eur Urol 2009;55:1333-1342.
  • 86. Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol 2018;14:907-917.
  • 87. Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, et al. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2021;73:10-25.
  • 88. Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor-expressing tumors. Ther Adv Med Oncol 2015;7:206-218.
  • 89. Pottier C, Fresnais M, Gilon M, et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers (Basel) 2020;12:731.
  • 90. Boumahdi S, de Sauvage FJ. The great escape: tumor cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020;19:39-56.
  • 91. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011;11:761-774.
  • 92. Bayliss R, Burgess SG, Leen E, Richards MW. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans 2017;45:709-717.
  • 93. Krzyzosiak A, Sigurdardottir A, Luh L, et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 2018;174:1216-1228.e1219.
  • 94. Mabonga L, Kappo AP. Protein-protein interaction modulators: advances, successes, and remaining challenges. Biophys Rev 2019;11:559-581.
  • 95. NCCN Clinical practice guidelines in oncology for Kidney Cancer v4. 2023. (cited 20.02.2023) Available from: https://www.nccn.org/ login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/ kidney.pdf
  • 96. NCCN Clinical practice guidelines in oncology for Bladder Cancer v1. 2023. (cited 20.02.2023) Available from: https://www.nccn.org/ login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/ bladder.pdf
  • 97. NCCN Clinical practice guidelines in oncology for Prostate Cancer v1. 2023. (cited 20.02.2023) Available from: https://www.nccn.org/ login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/ prostate.pdf
  • 98. NCCN Clinical practice guidelines in oncology for Testicular Cancer v1. 2023. (cited 20.02.2023) Available from: https://www.nccn.org/ login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/ testicular.pdf
APA Özveren B, Narter F (2023). Targeted Therapies: A Molecular Overview. , 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
Chicago Özveren Bora,Narter Fehmi Targeted Therapies: A Molecular Overview. (2023): 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
MLA Özveren Bora,Narter Fehmi Targeted Therapies: A Molecular Overview. , 2023, ss.1 - 14. 10.4274/uob.galenos.2022.2022.4.1
AMA Özveren B,Narter F Targeted Therapies: A Molecular Overview. . 2023; 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
Vancouver Özveren B,Narter F Targeted Therapies: A Molecular Overview. . 2023; 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
IEEE Özveren B,Narter F "Targeted Therapies: A Molecular Overview." , ss.1 - 14, 2023. 10.4274/uob.galenos.2022.2022.4.1
ISNAD Özveren, Bora - Narter, Fehmi. "Targeted Therapies: A Molecular Overview". (2023), 1-14. https://doi.org/10.4274/uob.galenos.2022.2022.4.1
APA Özveren B, Narter F (2023). Targeted Therapies: A Molecular Overview. Üroonkoloji Bülteni, 22(1), 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
Chicago Özveren Bora,Narter Fehmi Targeted Therapies: A Molecular Overview. Üroonkoloji Bülteni 22, no.1 (2023): 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
MLA Özveren Bora,Narter Fehmi Targeted Therapies: A Molecular Overview. Üroonkoloji Bülteni, vol.22, no.1, 2023, ss.1 - 14. 10.4274/uob.galenos.2022.2022.4.1
AMA Özveren B,Narter F Targeted Therapies: A Molecular Overview. Üroonkoloji Bülteni. 2023; 22(1): 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
Vancouver Özveren B,Narter F Targeted Therapies: A Molecular Overview. Üroonkoloji Bülteni. 2023; 22(1): 1 - 14. 10.4274/uob.galenos.2022.2022.4.1
IEEE Özveren B,Narter F "Targeted Therapies: A Molecular Overview." Üroonkoloji Bülteni, 22, ss.1 - 14, 2023. 10.4274/uob.galenos.2022.2022.4.1
ISNAD Özveren, Bora - Narter, Fehmi. "Targeted Therapies: A Molecular Overview". Üroonkoloji Bülteni 22/1 (2023), 1-14. https://doi.org/10.4274/uob.galenos.2022.2022.4.1