Yıl: 2023 Cilt: 27 Sayı: 3 Sayfa Aralığı: 1015 - 1020 Metin Dili: İngilizce DOI: 10.29228/jrp.395 İndeks Tarihi: 06-06-2023

The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study

Öz:
This study aims to evaluate the effect of photoactivated riboflavin (RF) on demineralized dentin of the primary molars. Fifty primary molars were selected for the study. The specimens were divided into five groups based upon the remineralization of dentin with photoactivated 0.1% RF. In Group I (n = 20), dentin remineralization was done with photoactivated 0.1% RF for 30 s, in Group II photoactivated 0.1% RF for 60 s. In Group III (positive control), dentin remineralization was done with remineralization solution. In Group IV (negatif control) only used distilled water. Surface Microhardness analysis (SMH) was evaluated using Vickers microhardness tester (EmcoTest, Duravision 20 G5, Vickers, DV250539, Mechanical Instrument Hardness Tester, Germany). D-Light Pro offers a unique Detection Mode based on near-UV light only. Data was analyzed with One way ANOVA test, Tukey’s test, Student’s t-test, Mann Whitney test, Dunn test and Kruskal-Wallis test were used. The SMH values of test groups were significantly higher than those of the negative control group (p = 0.01). The %SMHR values of Group III was significantly higher than Group I and II. The comparison between groups showed no statistically significant differences in %SMHR among Groups I with Group II and IV (p> 0.05). According to the findings of this study; we concluded that Riboflavin have a significant effect on demineralizated dentine. The remineralization effect of riboflavin on demineralized dentin needs to be relevant to further studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Manton DJ Child dental caries a global problem of inequality. E Clinical Medicine 1 2018: 3-4. https://doi.org/10.1016/j.eclinm.2018.06.006 [2] Meier, T, Deumelandt, P, Christen, O, Stangl, G I, Riedel, K, Langer, M. Global burden of sugar-related dental diseases in 168 countries and corresponding health care costs. J Dent Res. 2017; 96(8): 845-854. https://doi.org/10.1177/0022034517708315
  • [3] Banerjee A, Frencken JE, Schwendicke F, Innes NPT. Contemporary operative caries management: consensus recommendations on minimally invasive caries removal. Br Dent J. 2017; 223(3): 215-222. https://doi.org/10.1038/sj.bdj.2017.672
  • [4] Chen R, Jin R, Li X, Fang X, Yuan D, Chen Z, Yao S, Tang R, Chen Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent Mater. 2020 ;36(11):1397-1406. https://doi.org/10.1016/j.dental.2020.08.017
  • [5] Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009; 43(1):70-7. https://doi.org/10.1159/000201593
  • [6] Hashem M. Antimicrobial capacity and physico-chemical characteristics of adhesive resin containing riboflavin after photodynamic therapy. Photodiagnosis Photodyn Ther. 2021; 33: 102145. https://doi.org/10.1016/j.pdpdt.2020.102145
  • [7] Kranz S, Heyder M, Mueller S, Guellmar A, Krafft C, Nietzsche S, Tschirpke C, Herold V, Sigusch B, Reise M. Remineralization of artificially demineralized human enamel and dentin samples by zinc-carbonate hydroxyapatite nanocrystals. Materials (Basel). 2022; 14;15(20): 7173. https://doi.org/10.3390/ma15207173
  • [8] Firouzmandi M, Shafiei F, Jowkar Z, Nazemi F. Effect of silver diamine fluoride and proanthocyanidin on mechanical properties of caries-affected dentin. Eur J Dent. 2019; 13(2): 255-260. https://doi.org/10.1055/s-0039-1693237
  • [9] Liu R, Fang M, Xiao Y, Li F, Yu L, Zhao S, Shen L, Chen J. The effect of transient proanthocyanidins preconditioning on the cross-linking and mechanical properties of demineralized dentin. J Mater Sci Mater Med. 2011; 22(11): 2403- 11. https://doi.org/10.1007/s10856-011-4430-4
  • [10] Miller CA, Ashworth E, Deery C, El Sharkasi L, Moorehead RD, Martin N. Effect of demineralizing agents on organic and ınorganic components of dentine. Caries Res. 2021; 55(5): 521-533. https://doi.org/10.1159/000518463
  • [11] Ten Cate JM, Featherstone JD. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med. 1991; 2(3): 283-296. https://doi.org/10.1177/10454411910020030101
  • [12] Al-Kheraif AA, Mohamed BA, Khan AA, Al-Shehri AM. Role of Riboflavin; Curcumin photosensitizers and Ozone when used as canal disinfectant on push-out bond strength of glass fiber post to radicular dentin. Photodiagnosis Photodyn Ther. 2022; 37: 102592. https://doi.org/10.1016/j.pdpdt.2021.102592
  • [13] Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J. Riboflavin as a dentin crosslinking agent: Ultraviolet A versus blue light. Dent Mater. 2012; 28(12): 1284-1291. https://doi.org/10.1016/j.dental.2012.09.009
  • [14] Agrawal VB. Corneal collagen cross-linking with riboflavin and ultraviolet - a light for keratoconus: results in Indian eyes. Indian J Ophthalmol. 2009;57(2):111-114. https://doi.org/10.4103/0301-4738.44515
  • [15] Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010; 36(1): 114-120. https://doi.org/10.1016/j.jcrs.2009.07
  • [16] Hatami-Marbini H, Jayaram SM. Effect of UVA/Riboflavin collagen crosslinking on biomechanics of artificially swollen corneas. Invest Ophthalmol Vis Sci. 2018; 1;59(2):764-770. https://doi.org/10.1167/iovs
  • [17] Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620-627. https://doi.org/10.1016/s0002- 9394(02)02220-1
  • [18] Snibson GR. Collagen cross-linking: A new treatment paradigm in corneal disease - A review. Clin Exp Ophthalmol. 2010;38(2):141-153. https://doi.org/10.1111/j.1442-9071.2010.02228.x
  • [19] Kasemkhun P, Rirattanapong P. The Efficacy of non-fluoridated toothpastes on artificial enamel caries in primary teeth: An ın vitro study. J Int Soc Prev Commun Dent. 2021;3;11(4):397-401. https://doi.org/10.4103/jispcd.JISPCD_64_21
  • [20] Joves GJ, Inoue G, Nakashima S, Sadr A, Nikaido T, Tagami J. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin. Dent Mater J. 2013;32(1):138-143. https://doi.org/10.4012/dmj.2012- 243
  • [21] Betancourt F, Kiss A, Krejci I, Bortolotto T. ToF-SIMS analysis of demineralized dentin biomodified with calcium phosphate and collagen crosslinking: Effect on marginal adaptation of class V adhesive restorations. Materials (Basel). 2021; 12;14(16): 4535. https://doi.org/10.3390/ma14164535
  • [22] Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008; 29(8): 1127-1137. https://doi.org/10.1016/j.biomaterials.2007.11.001
  • [23] Uemura R, Miura J, Ishimoto T, Yagi K, Matsuda Y, Shimizu M, Nakano T, Hayashi M. UVA-activated riboflavin promotes collagen crosslinking to prevent root caries. Sci Rep. 2019; 4;9(1): 1252. https://doi.org/10.1038/s41598- 018-38137-7
  • [24] Abuelenain DA, Abou Neel EA, Abu-Haimed T. Effects of dentin modifiers on surface and mechanical properties of acid-etched dentin. Int J Adhes Adhes. 2018; 81: 43-47. https://doi.org/10.1016/j.ijadhadh.2017.11.006
  • [25] Koziol J. Studies on flavins ın organic solvents ı*. Spectral characterıstıcs of riboflavin, riboflavin tetrabutyrate and lumichrome. Photochem Photobiol. 1966; 5(1): 41-54. https://doi.org/10.1111/j.1751-1097.1966.tb05759.x
  • [26] Abunawareg M, Abuelenain DA, Elkassas D, Haimed TA, Al-Dharrab A, Zidan A, Pashley D. Role of dentin cross linking agents in optimizing dentin bond durability. Int J Adhes Adhes. 2017, 78: 83-88. https://doi.org/10.1016/j.ijadhadh.2017.06.009
  • [27] Liu X, Zhou J, Chen L, Yang Y, Tan J. UVA-activated riboflavin improves the strength of human dentin. J Oral Sci. 2015; 57(3): 229-234. https://doi.org/10.2334/josnusd.57.229
  • [28] Gajjela RS, Satish RK, Sajjan GS, Varma KM, Rambabu T, Vijaya Lakshmi BH. Comparative evaluation of chlorhexidine, grape seed extract, riboflavin/chitosan modification on microtensile bond strength of composite resin to dentin after polymerase chain reaction thermocycling: An in vitro study. J Conserv Dent. 2017; 20(2): 120-124. https://doi.org/10.4103/0972-0707.212241
  • [29] Balalaie A, Rezvani MB, Mohammadi Basir M. Dual function of proanthocyanidins as both MMP inhibitor and crosslinker in dentin biomodification: A literature review. Dent Mater J. 2018; 30;37(2): 173-182. https://doi.org/10.4012/dmj.2017-062
  • [30] Firouzmandi M, Vasei F, Giti R, Sadeghi H. Effect of silver diamine fluoride and proanthocyanidin on resistance of carious dentin to acid challenges. PLoS One. 2020; 17;15(9): e0238590. https://doi.org/10.1371/journal.pone.0238590
  • [31] Seseogullari-Dirihan R, Mutluay MM, Vallittu P, Pashley DH, Tezvergil-Mutluay A. Effect of pretreatment with collagen crosslinkers on dentin protease activity. Dent Mater. 2015; 31(8): 941-947. https://doi.org/10.1016/j.dental.2015.05.002
APA MURATOGLU B, AYDINOGLU A, YORUC A, KARGUL B (2023). The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. , 1015 - 1020. 10.29228/jrp.395
Chicago MURATOGLU Beril,AYDINOGLU Aysu,YORUC Afife Binnaz HAZAR,KARGUL Betul The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. (2023): 1015 - 1020. 10.29228/jrp.395
MLA MURATOGLU Beril,AYDINOGLU Aysu,YORUC Afife Binnaz HAZAR,KARGUL Betul The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. , 2023, ss.1015 - 1020. 10.29228/jrp.395
AMA MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. . 2023; 1015 - 1020. 10.29228/jrp.395
Vancouver MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. . 2023; 1015 - 1020. 10.29228/jrp.395
IEEE MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B "The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study." , ss.1015 - 1020, 2023. 10.29228/jrp.395
ISNAD MURATOGLU, Beril vd. "The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study". (2023), 1015-1020. https://doi.org/10.29228/jrp.395
APA MURATOGLU B, AYDINOGLU A, YORUC A, KARGUL B (2023). The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. Journal of research in pharmacy (online), 27(3), 1015 - 1020. 10.29228/jrp.395
Chicago MURATOGLU Beril,AYDINOGLU Aysu,YORUC Afife Binnaz HAZAR,KARGUL Betul The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. Journal of research in pharmacy (online) 27, no.3 (2023): 1015 - 1020. 10.29228/jrp.395
MLA MURATOGLU Beril,AYDINOGLU Aysu,YORUC Afife Binnaz HAZAR,KARGUL Betul The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. Journal of research in pharmacy (online), vol.27, no.3, 2023, ss.1015 - 1020. 10.29228/jrp.395
AMA MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. Journal of research in pharmacy (online). 2023; 27(3): 1015 - 1020. 10.29228/jrp.395
Vancouver MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study. Journal of research in pharmacy (online). 2023; 27(3): 1015 - 1020. 10.29228/jrp.395
IEEE MURATOGLU B,AYDINOGLU A,YORUC A,KARGUL B "The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study." Journal of research in pharmacy (online), 27, ss.1015 - 1020, 2023. 10.29228/jrp.395
ISNAD MURATOGLU, Beril vd. "The effect of photoactivated Riboflavin on primary dentin remineralizatıon: a pilot study". Journal of research in pharmacy (online) 27/3 (2023), 1015-1020. https://doi.org/10.29228/jrp.395