Yıl: 2023 Cilt: 26 Sayı: 3 Sayfa Aralığı: 531 - 544 Metin Dili: İngilizce DOI: 10.18016/ksutarimdoga.vi.1144913 İndeks Tarihi: 06-06-2023

Effects of Grape Marc on Vase Life of Carnation Flowers

Öz:
In carnation, vase life is shortened due to ethylene and water stress, resulting in petal curling, browning, and wilting symptoms. Preservative solutions are used to prolong the vase life of cut flowers in the world, and natural substances with antimicrobial properties have been preferred as preservatives in recent years. It is thought that benefiting from the antimicrobial properties of plant wastes will be beneficial for both the cut flower industry and waste management because they are natural. This research was carried out to determine the effect of grape marc extract (GME) on the vase life of cut carnation. D. caryophyllus cv. 'Baltico' was used as a plant material. The plants were placed in vases containing two different concentrations of GME (100 μL L-1, 200 μL L-1). The vase life, relative fresh weight (RFW), daily solution uptake (DSU), lipid peroxidation, proline content, and antioxidant enzyme activities were measured during and at the end of the experiment. In the study, it was determined that GME was effective on the vase life of cut carnation flowers and GME at 200 μL L-1 concentration (22.67 days) extended the vase life by 6.50 days and 40.2% compared to the control (16.17 days), (distilled water). At the same time, GME was found to be effective on the post-harvest stress mechanisms of cut carnation flowers. GME improved vase life by increasing both DSU, and antioxidant enzyme activities, and reducing RFW loss. It also reduced the accumulation of MDA and proline.
Anahtar Kelime:

Üzüm Cibresinin Karanfil Çiçeklerinin Vazo Ömrüne Etkileri

Öz:
Karanfillerde taç yapraklarda içe kıvrılma, kahverengileşme ve solma semptomları ile sonuçlanan yaşlanma ve su stresi nedeniyle vazo ömrü kısalmaktadır. Dünyada kesme çiçeklerde vazo ömrünü uzatmak amacıyla koruyucu solüsyonlar kullanılmakta ve son yıllarda koruyucu olarak antimikrobiyal özelliklere sahip doğal maddeler tercih edilmektedir. Doğal olmaları nedeniyle bitkisel atıkların antimikrobiyal özelliklerinden faydalanılmasının hem kesme çiçek sektörü hem de atık yönetimi açısından faydalı olacağı düşünülmektedir. Bu araştırma, üzüm cibresi ekstraktının (GME) kesme karanfilin vazo ömrüne etkisini belirlemek amacıyla yürütülmüştür. Bitkisel materyal olarak D. caryophyllus türüne ait 'Baltico' çeşidi kullanılmıştır. Bitkiler, iki farklı konsantrasyonda GME (100 μL L-1, 200 μL L-1) içeren vazolara yerleştirilmiş ve bitkilerde deneme süresince ve deneme sonunda vazo ömrü, oransal taze ağırlık (RFW), günlük solüsyon alımı (DSU), lipid peroksidasyonu, prolin içeriği ve antioksidan enzim aktiviteleri belirlenmiştir. Çalışmada, GME'nin çiçeklerin vazo ömrü üzerine etkili olduğu ve 200 μL L-1 konsantrasyonundaki GME'nin (22.67 gün) vazo ömrünü, kontrole (16.17 gün), (saf su) göre 6.50 gün ve %40.2 oranında uzattığı belirlenmiştir. Aynı zamanda kesme çiçeklerin hasat sonrası stres mekanizmaları üzerinde GME'nin etkili olduğu saptanmıştır. GME, DSU ile antioksidan enzim aktivitelerini artırarak ve RFW kaybını azaltarak vazo ömrünü iyileştirmiş; MDA ve prolin birikimini azaltmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aalifar, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., Daylami S. D., Serek, M., Woltering, E., & Li, T. (2020). Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science 11, 511. https://doi.org/10.3389/fpls.2020.00511.
  • Adam, A. I. (2021). Effect of essential oils on vase life of cut flowers of Solidago canadensis L. (Golden rod). Scientific Journal of Agricultural Sciences 3(1), 46-55. https://doi.org/10.21608/sjas.2021. 75270. 1096.
  • AIPH, 2021. International Statistics Flowers and Plants Yearbook 2021. Union Fleurs. Alkaç, O. S., Öcalan, O. N., & Güneş, M. 2020. The effect of some solutions on the vase life of star flowers. Ornamental Horticulture 26(4), 607-613. https://doi.org/10.1590/2447-536x.v26i4.2184.
  • Alvarez, M. E., Savoure, A., & Szabados, L. (2021). Proline metabolism as regulatory hub. Trends in Plant Science 27(1), 39-55. https://doi.org/10.1016/ j.tplants.2021.07.009.
  • Amin, O. A. 2017. II-Effect of some chemical treatments on keeping quality and vase life of cut chrysanthemum flowers. Middle East Journal of Agriculture Research 06(01), 221-243.
  • Anonymous, 1999. NCCLS (National Committee for Clinical Laboratory Standards). Performance Standards for Antimicrobial Susceptibility Testing. The 9th International Supplement, M100-S9. Villanova, PA. (Date: 20.05.2019).
  • Anonymous, 2022. Carnations. Care Tips. https:/ bloomiq.com/cutflowers/13.(Date: 20.05. 2019).
  • Azad, A. K., Sawa, Y., Ishikawa, T., & Shibata, H. (2004). Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant Cell Physiology 45(5), 608-617. https://doi.org/10.1093/pcp/pch069.
  • Aziz, S., Younis, A., Jaskani, M. J., & Ahmad, R. (2020). Effect of pgrs on antioxidant activity and phytochemical in delay senescence of lily cut flowers. MDPI Agronomy 10(11), 1704. https://doi.org/10.3390/agronomy10111704.
  • Bağcı, E., & Dığrak, M. (1996). Antimicrobial activities of essential oils of some forest trees. Turkish Journal of Biology 20, 191-198.
  • Bağcı, E., & Dığrak, M. (1997). In vitro antimicrobial effects of some fir species essential oils. Turkish Journal of Biology 21, 273-281.
  • Bat, M., Tunçtürk, R., & Tunçtürk, M. (2020). Effect of drought stress and seaweed applications on some physiological parameters in Echinacea (Echinacea purpurea L.). KSU Journal of Agriculture and Nature 23(1), 99-107. https://doi.org/10.18016/ ksutarimdoga.vi.535210.
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39(1), 205-207. https://doi.org/10.1007/bf00018060.
  • Bradshaw, L. J. 1992. Laboratory of Microbiology. Fourth Edition. Saunders College Publishing, Printed in U.S.A., 435 p.
  • Çakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinated wheat seeds. Journal of Experimental Botany 44(1), 127-132. https:// doi.org/10.1093/jxb/44.1.127.
  • Collins, C. H., Lyne, P. M., & Grange, J. M. (1987). Microbiological Methods. Butterworths and Co. (Publishers) Ltd. London, 450 p.
  • Damunupola, J. W., Qian, T., Muusers, R., Joyce, D.C., Irving, D.E., & Van Meeteren, U. (2010). Effect of s- carvone on vase life parameters of selected cut flower and foliage species. Postharvest Biology and Technology 55(1), 66-69.
  • Dar, R. A., & Tahır, I. (2018). Effect of ethylene antagonist silver thiosulphate on the flower longevity of Clarkia pulchella Pursh.. Journal of Horticultural Research 26(1), 5-12. https://doi.org/ 10.2478/johr-2018-0001.
  • Du, F., Shi, H., Zhang, X., & Xu, X. (2014). Responses of reactive oxygen scavenging enzymes, proline and malondialdehyde to water deficits among six secondary successional seral species in Loess plateau. PLoS One 9(6), e98872. https://doi.org/ 10.1371/journal.pone.0098872.
  • Ebrahimzadeh, A., Jimenez-Becker, S., Chaparro- Torres, L. A., Fernandez-Trujillo, P. J., Serrano- Mula, M., & Lao-Arenas, M.T. (2013). Postharvest petal senescence of two cultivars of carnation flowers with different vase lifes. Australian Journal of Crop Science 7(12), 1829-1835.
  • Ebrahimzadeh, M. A., Fathi, H., Ziar, A., & Mohammadi, H. (2019). Attenuation of brain mitochondria oxidative damage by Albizia julibrissin Durazz: neuroprotective and antiemetic effects. Drug and Chemical Toxicology 42(2), 122- 129. https://doi.org/10.1080/01480545.2017.1413106.
  • Elansary, H. O. (2020). Tree bark phenols regulate the physiological and biochemical performance of gladiolus flowers. MDPI Processes 8(1), 71. https://doi.org/10.3390/pr8010071.
  • Eleonora, N., Dobrei, A., Dobrei, A., Bampidis, V., & Valeria, C. (2014). Grape pomace in sheep and dairy cows feeding. Journal of Horticulture, Forestry and Biotechnology 18(2), 146-150.
  • Elhindi, K. M. (2012). Effects of postharvest pretreatments and preservative solutions on vase life longevity and flower quality of sweet pea (Lathyrus odoratus L.). Photosynthetica 50(3), 371- 379. https://doi.org/10.1007/s11099-012-0053-3.
  • Ezhilmathi, K., Singh, V. P., Arora, A., & Sairam, R. K. (2007). Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of gladiolus cut flowers. Plant Growth Regulation 51(2), 99-108. https://doi.org/10.1007/s10725-006-9142-2.
  • Frew, A., Weston L. A., Reynolds, O. L., & Gurr, G. M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Annals of Botany 121(7), 1265-1273. https://doi.org/10.1093/ aob/mcy009.
  • Ghadimian, S., & Danaei, E. (2020). Influences of ascorbic acid and salicylic acid on vase life of cut flowers rose (Rosa hybrida cv. Black Magic). The Journal of Environment, Agriculture and Biological Sciences 2(1), 1-6. https://doi.org/10.29252/ alkhass. 2.1.1.
  • Gökçen, İ. S., Keskin, N., Kunter, B., Cantürk, S., & Karadoğan, B. (2017). Grape phytochemicals and research on grape cultivars grown in Turkey. Turkish Journal of Forest Science 1(1), 93-111. https://doi.org/10.32328/turkjforsci.285695.
  • Gomes, M. H. T., de Carvalho, S. M. P., & de Almeida, D. P. F. (2010). Pectin solubility and water relations during vase life of cut flowers. Horticulture, Environment, and Biotechnology 51(4), 262-268.
  • Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169(2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02. 023.
  • Ha, S. T. T., Lim, J. H., & In, B. C. (2019). Extension of the vase life of cut roses by both improving water relations and repressing ethylene responses. Korean Journal of Horticultural Science and Technology 37(1), 65-77. https://doi.org/10.12972/ kjhst.20190007.
  • Hassan, F., Schmidt, G., Hafez, Y. M., Pogany, M., Ankush, J. (2004). 1-MCP and STS as ethylene inhibitors for prolonging the vase life of carnation and rose cut flowers. International Journal of Horticultural Science 10(4), 101-107.
  • Hassanuzman, M., Bhuyan, M. H. M. B., Zulfigar, F., Raza, A., Mohsin, S.M., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. MDPI Antioxidants 9(8), 681. https://doi.org/10.3390/antiox9080681.
  • Hassanzadeh-Naemi, M., Jari, S. K., Zarrinnia, V., & Fatehi, F. (2021). The effect of exogenous methyl jasmonate and brassinosteroid on physicochemical traits, vase life, and gray mold disease of cut rose (Rosa hybrida L.) flowers. Journal of Saudi Society of Agricultural Sciences 20(7), 467-475. https:// doi.org/10.1016/j.jssas.2021.05.007.
  • He, S., Joyce, D. C., Irving, D. E., & Faragher, J. D. (2006). Stemend blockage in cut grevillea ‘crimson yul-lo’ inflorescences. Postharvest Biology and Technology 41(1), 78-84. https://doi.org/10.1016/ j.postharvbio.2006.03.002.
  • Horibe, T., & Makita, M. (2019). Methyl jasmonate treatment delays flower opening and petal wilting of three cut rose cultivars. Journal of Horticultural Research 27(2), 1-10. https://doi.org/10.2478/johr- 2019-0016.
  • Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. R. (2017). Ethylene role in plant growth, development, and senescence: interaction with other phytohormones. Frontiers in Plant Science 8, 475. https://doi.org/10.3389/ fpls.2017.00475.
  • Jawaharlal, M., Ganga,, M., Padmadevi, R., Jegadeeswari, V., & Kartikeyan, S. (2007). A Technical Guide on Carnation. Department of Floriculture and Landscaping, Horticultural College and Research Institute, Tamil Nadu Agricultural University, 56 p. India. Kazaz,, S. (2015). Factors affecting post harvest lifes in cut flowers. Turkish Seed Association Journal 4(14), 42-45.
  • Kazemi, M., & Ameri, A. (2012). Response of vase-life carnation cut flower to salicylic acid, silver nanoparticles, glutamine and essential oil. Asian Journal of Animal Sciences 6(3), 122-131. https://doi.org/10.3923/ajas.2012.122.131.
  • Kazemi, M., Aran, M., & Zamani, S. (2011). Extending the vase life of lisianthus (Eustoma grandiflorum Mariachi. cv. Blue) with different preservative. American Journal of Plant Physiology 6(3), 167- 175. https://doi.org/10.3923/ajpp.2011.167.175.
  • Kazemi, M., Gholami, M., Asadi, M., Aghdasi, S., & Almasi, M. (2012). Response of carnation (Dianthus caryophyllus L.) to salicylic acid and glutamine. Asian Journal of Biochemistry 7(3), 158-164. https://doi.org/10.3923/ajb.2012.158.164.
  • Khenizy, S., Abd El-Moneim, A., & Abdel-Fattah, G. H. (2014). Effect of natural extracts on vase life of gypsophila cut flowers. Scientific Journal of Flowers and Ornamental Plants 1(1), 1-16. https:// doi.org/10.21608/SJFOP.2014.4000.
  • Kiselev, K. V., Dubrovina, A. S., Veselova, M. V., Bulgakov, V. P., Fedoreyev, S. A., & Zhuravlev, Y. N. (2007). The Rol-B gene-induced over production of resveratrol in Vitis amurensis transformed cells. Journal of Biotechnology 128(3), 681-692.
  • Kılıç, T. , Kazaz, S. , Doğan, E. & Ergür Şahin, E. G. (2020). Effects Of Some Essentıal Oil Compounds On Vase Life Of Cut Hydrangea Flowers . Ziraat Fakültesi Dergisi, Türkiye 13. Ulusal, I. Uluslararası Tarla Bitkileri Kongresi Özel Sayısı , 172-179 . Retrieved from https://dergipark.org.tr/ en/pub/ sduzfd/issue/52563/650745
  • Koç, E., & Üstün, A. S. (2008). Defence against pathogen in plants and antioxidants. Erciyes University Journal of the Institute of Science and Technology 24(1-2), 82-100.
  • Koentjoro, Y., Sukendah, S., Purwanto, E., & Purnomo, D. (2021). The role of silicon on content of proline, protein, and abscisic acid on soybean under drought stress. Earth and Environmental Science 637, 012086. https://doi.org/10.1088/1755- 1315/637/1/012086.
  • Lama, B., Ghosal,, M., Kumar-Gupta, S., & Mandal, P. (2015). Assessment of different preservative solutions on vase life of cut roses. Journal of Ornamental Plants 3(3), 171-181. https://doi.org/ 10.11623/frj.2017.25.3.02.
  • Langroudi, E. M., Hashemabadi, D., Kalatejari, S., & Asadpour, L. (2019). Effect of silver nanoparticles, spermine, salicylic acid and essential oils on vase life of alstroemeria. Revista de Agricultura Neotropical 6(2), 100-108. https://doi.org/10.32404/ rean.v6i2.2366.
  • Lou, X., Anwar, M., Wang, Y., Zhang, H., & Ding, J. (2021). Impact of inorganic salts on vase life and postharvest qualities of the cut flower of perpetual carnation. Brazilian Journal of Biology 81(2), 228- 236. https://doi.org/10.1590/1519-6984.221502.
  • Luchian, C. E., Cotea, V. V., Vlase, L., Toiu, A. M., Colibaba, L. C., R ̆ aschip, I. E., Nad ̆ as, G., Gheldiu, A. M., Tuchilus, C., & Rotaru, L. (2019).
  • Antioxidant and antimicrobial effects of grape pomace extracts. BIO Web of Conferences 15, 04006, 42nd World Congress of Vine and Wine. https://doi.org/10.1051/bioconf/20191504006.
  • Madhava Rao, K. V., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to zn and ni stress. Plant Science 157(1), 113-128. https://doi.org/10.1016/s0168-9452(00) 00273-9.
  • Maity, T. R., Samanta, A., Saha, B., & Datta, S. (2019). Evaluation of piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of gladiolus. Bulletin of the National Research Centre 43(1), 1-11.
  • https://doi.org/10.1186/s42269-019-0051-8. Mohammadi, M., Aelaei, M., & Saidi, M. (2020). Pre- Harvest and pulse treatments of spermine, γ- and β-aminobutyric acid increased antioxidant activities and extended the vase life of gerbera cut flowers ‘Stanza’. Ornamental Horticulture 26(2), 306-316. https://doi.org/10.1590/2447-536x.v26i2. 2120.
  • Mylonas, C., & Kouretas, D. (1999). Lipid peroxidation and tissue damage. In Vivo 13(3), 295-309.
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant and Cell Physiology 22(5), 867-880. https://doi.org/10.1093/oxford journals. pcp.a076232.
  • Nguyen, T. K., & Lim, J. H. (2021). Do eco-friendly floral preservative solutions prolong vase life better than chemical solutions?. MDPI Horticulturae 7(10), 415. https://doi.org/10.3390/ horticultura 7100415.
  • Panda, S. K., & Khan, M. H. (2004). Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Brazilian Journal of Plant Physiology 16(2), 115-118.
  • Pang, Z., Li, H., Lin, G., Sun, Y., Zhou, H., & He, S. (2021). One-Step green preparation of nano-silver aqueous solution, characterization, and its antibacterial potential for cut carnation flowers. Research Square in press. https://doi.org/10.21203/ rs.3.rs-284927/v1.https://assets.researchsquare. com/files/rs-284927/v1/ea041389-45cf-483a-8e0f- 1419d41e4074.pdf?c=1631878822
  • Patel, R., Thakkar, A., & Mankad, A. (2016). Effect of chemical preservative on water relation and vase- life of Tithonia rotundifolia Blake cut flower. Annals of Biological Research 7(1), 27-30.
  • Paul, D., Jannat, A., Mahmud, A., Akhter, M.J., & Mahmood, S. (2021). Preservative solutions on vase life and quality of cut Polianthes tuberosa L.. Ornamental Horticulture 27(3), 417-424. https://doi.org/10.1590/2447-536X.v27i3.2375.
  • Rahman, M. M., Ahmad, S. H., & Lgu, K. S. (2012). Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers. The Scientific World Journal 2(1), 102805. https://doi.org/10.1100/2012/102805.
  • Saeed, T., Hassan, I., Abbasi, N. A., & Jilani, G. (2014). Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers. Plant Growth Regulation 72(1), 89-95. https://doi.org/10.1007/s10725-013-9839-y.
  • Sarıçiçek, B. Z., & Kılıç, Ü. (2002). An investigation on determining of feed values of grape pomace. The university of Ondokuz Mayıs Journal of Faculty of Agriculture 17(1), 9-12.
  • Satoh, S., Shibuya, K., Waki, K., & Kosugi, Y. (2005). Mechanism of senescence in carnation flowers (oral presentation). Acta Horticultureae 669 VIII International Symposium on Postharvest Physiology of Ornamental Plants, Doorwerth, Netherlands, 1 Februrary, pp. 191-198. https://doi.org/10.17660/actahortic.2005.669.24.
  • Şevik, M. A., & Saruhan, İ. (2010). Plant protecton problems in carnation (Dianthus caryophyllus L.). Turkish Journal of Scientific Reviews 3(2), 33-41.
  • Shanan, N. T. (2017). Optimum pH value for improving postharvest characteristics and extending vase life of Rosa hybrida cv. Tereasa cut flowers. Asian Journal of Advances in Agricultural Research 1(3), 1-11. https://doi.org/10.9734/ajaar/ 2017/34655.
  • Shokalu, A. O., Israel, J., Mosunmola, O., Eniola, O., Gift, E., Adebayo, A., & Henry, A. (2021). Aloe vera and STS solution on microbial population and vase life of heliconia cut flowers. Ornamental Horticulture 27(4), 470-475. https://doi.org/ 10.1590/2447 - 536x.v27i4.2356.
  • Skutnik, E., Jedrzejuk, A., Rabiza-Swider, J., Rochala- Wojciechowska, J., Latkowska, M., & Lukaszewska, A. (2020). Nanosilver as a novel biocide for control of senescence in garden cosmos. Scientific Reports 10(1), 10274. https://doi.org/10.1038/s41598-020- 67098-z.
  • Skutnik, E., Lukaszewska, A., & Rabiza-Swider, J. (2021). Effects of postharvest treatments with nanosilver on senescence of cut lisianthus (Eustoma grandiflorum (Raf.) Shinn.) flowers. MDPI Agronomy 11(2), 215. https://doi.org/10.3390/ agronomy11020215.
  • Song, J., Li, Y., Hu, J., Lee, J., & Jeong, B. R. (2021). Pre- and/or postharvest silicon application prolongs the vase life and enhances the quality of cut peony (Paeonia lactiflora Pall.) flowers. MDPI Plants 10 (8), 1742. https://doi.org/10.3390/plants100 81742.
  • Tah, J., & Mamgain, A. (2013). Variation in different agronomical characters of some carnation (Dianthus caryophyllus) cultivars. Research Journal of Biology 1, 10-23.
  • Teerarak, M., & Laosinwattana, C. (2019). Essential oil from ginger as a novel agent in delaying senescence of cut fronds of the fern (Davallia solida (G. Forst.) Sw.). Postharvest Biology and Technology 156, 110927. https://doi.org/ 10.1016/j.postharvbio.2019.06.001.
  • Wang, F., Liu, J., Zhou, L., Pan, G., Li, Z., Zaidi, S. H. R., & Cheng, F. (2016). Senescence-specific change in ros scavenging enzyme activities and regulation of various sod isozymes to ros levels in psf mutant rice leaves. Plant Physiology and Biochemistry 109, 248-261. https://doi.org/10.1016/j.plaphy. 2016.10. 005.
  • Wang, P., Fang, H., Gao, R., & Liao, W. (2021). Protein persulfidation in plants: function and mechanism. MDPI Antioxidants 10(10), 1631. https://doi.org/ 10.3390/antiox10101631.
  • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. MDPI Horticulturae 7(3), 50. https://doi.org/ 10.3390/horticulturae7030050.
  • Zamani, S., Hadavi, E., Kazemi, M., & Hekmati, J. (2011). Effect of some chemical treatments on keeping quality and vase life of chrysanthemum cut flowers. World Applied Sciences Journal 12(11), 1962-1966.
  • Zhang, Sg., Han, Sy., Yang, Wh., Wei, Hl., Zhang, M., & Qi, Lw. (2010). Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tissue and Organ Culture (PCTOC) 100(21), 21-29. https://doi.org/10.1007/s11240-009-9612-0.
APA KILIÇ T, CETİN E, DALER S (2023). Effects of Grape Marc on Vase Life of Carnation Flowers. , 531 - 544. 10.18016/ksutarimdoga.vi.1144913
Chicago KILIÇ TUGBA,CETİN Emine Sema,DALER Selda Effects of Grape Marc on Vase Life of Carnation Flowers. (2023): 531 - 544. 10.18016/ksutarimdoga.vi.1144913
MLA KILIÇ TUGBA,CETİN Emine Sema,DALER Selda Effects of Grape Marc on Vase Life of Carnation Flowers. , 2023, ss.531 - 544. 10.18016/ksutarimdoga.vi.1144913
AMA KILIÇ T,CETİN E,DALER S Effects of Grape Marc on Vase Life of Carnation Flowers. . 2023; 531 - 544. 10.18016/ksutarimdoga.vi.1144913
Vancouver KILIÇ T,CETİN E,DALER S Effects of Grape Marc on Vase Life of Carnation Flowers. . 2023; 531 - 544. 10.18016/ksutarimdoga.vi.1144913
IEEE KILIÇ T,CETİN E,DALER S "Effects of Grape Marc on Vase Life of Carnation Flowers." , ss.531 - 544, 2023. 10.18016/ksutarimdoga.vi.1144913
ISNAD KILIÇ, TUGBA vd. "Effects of Grape Marc on Vase Life of Carnation Flowers". (2023), 531-544. https://doi.org/10.18016/ksutarimdoga.vi.1144913
APA KILIÇ T, CETİN E, DALER S (2023). Effects of Grape Marc on Vase Life of Carnation Flowers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(3), 531 - 544. 10.18016/ksutarimdoga.vi.1144913
Chicago KILIÇ TUGBA,CETİN Emine Sema,DALER Selda Effects of Grape Marc on Vase Life of Carnation Flowers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 26, no.3 (2023): 531 - 544. 10.18016/ksutarimdoga.vi.1144913
MLA KILIÇ TUGBA,CETİN Emine Sema,DALER Selda Effects of Grape Marc on Vase Life of Carnation Flowers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, vol.26, no.3, 2023, ss.531 - 544. 10.18016/ksutarimdoga.vi.1144913
AMA KILIÇ T,CETİN E,DALER S Effects of Grape Marc on Vase Life of Carnation Flowers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2023; 26(3): 531 - 544. 10.18016/ksutarimdoga.vi.1144913
Vancouver KILIÇ T,CETİN E,DALER S Effects of Grape Marc on Vase Life of Carnation Flowers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2023; 26(3): 531 - 544. 10.18016/ksutarimdoga.vi.1144913
IEEE KILIÇ T,CETİN E,DALER S "Effects of Grape Marc on Vase Life of Carnation Flowers." Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26, ss.531 - 544, 2023. 10.18016/ksutarimdoga.vi.1144913
ISNAD KILIÇ, TUGBA vd. "Effects of Grape Marc on Vase Life of Carnation Flowers". Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 26/3 (2023), 531-544. https://doi.org/10.18016/ksutarimdoga.vi.1144913