Yıl: 2023 Cilt: 30 Sayı: 5 Sayfa Aralığı: 628 - 634 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2022.10.325 İndeks Tarihi: 06-06-2023

Physiology of nose-to-brain pathways and current approaches to intranasal treatment

Öz:
There are many factors that affect the passage of drugs through the blood-brain barrier and the blood-cerebrospinal fluid barrier. Generally, conventional treatments for many psychiatric disorders and central nervous system diseases drugs are administered parenteral or per os to produce systemic effects. However, an increased dose or extended treatment time is required to achieve effective drug concentrations at the desired site. This significantly increases the risk of systemic toxicity. For this reason, strategies for the direct delivery of drugs to the central nervous system without the need of increasing their dose are being investigated intensively. Drug delivery methods to the central nervous system are divided into three groups non-invasive, invasive and alternative methods. Intranasal drug administration, which is one of the non-invasive methods that increase the solubility and permeability of the drug, prolongs the drug effects, minimizes enzymatic degradation, and increases the bioavailability of the drug, has become the focus of attention of researchers in recent years. The use of experimental animal models in studies to identify intranasal drug administration routes and potential brain targets limits the applicability of these results to humans. In this review, the routes of intranasal drugs to the brain, the properties of drugs that can reach the central nervous system, and drug examples used in clinical trials are discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Miller F, Afonso PV, Gessain A, Ceccaldi PE. Blood-brain barrier and retroviral infections. Virulence. 2012;3(2):222-9.
  • 2. Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019;11(10):540.
  • 3. Achar A, Myers R, Ghosh C. Drug delivery challenges in brain disorders across the blood-brain barrier: novel methods and future considerations for improved therapy. Biomedicines. 2021;9(12):1834.
  • 4. Bellettato CM, Scarpa M. Possible strategies to cross the bloodbrain barrier. Ital J Pediatr. 2018;44(Suppl 2):131.
  • 5. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26.
  • 6. Nair SC, Vinayan KP, Mangalathillam S. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: formulation, drug release, permeation and in vivo pharmacokinetic studies. Pharmaceutics. 2021;13(10):1640.
  • 7. Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physicochemical characteristics and mucociliary clearance of bourthe nasal olfactory mucosa. Pharmaceutics. 2018;10(3):116.
  • 8. Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev. 2001;51(1-3):5-19.
  • 9. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44-52.
  • 10. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371-381.
  • 11. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337-362.
  • 12. Liu XF, Fawcett JR, Hanson LR, Frey WH. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13:16.
  • 13. Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481-496.
  • 14. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Deliv Tech. 2002;7:67-97.
  • 15. Gartziandia O, Herran E, Pedraz JL, et al. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304-313.
  • 16. Kimura R, Miwa M, Kato Y, et al. Nasal absorption of tetraethylammonium in rats. Arch Int Pharmacodyn Ther. 1989;302:7-17.
  • 17. Riccardi C, Napolitano F, Montesarchio D, et al. Nanoparticleguided brain drug delivery: expanding the therapeutic approach to neurodegenerative diseases. Pharmaceutics. 2021;13(11):1897.
  • 18. Sun Y, Li L, Xie H, et al. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonolsolid lipid nanoparticles for intranasal drug delivery. Int J Nanomedicine. 2020;15:3137-3160.
  • 19. Sekerdag E, Lüle S, Bozdağ Pehlivan S, et al. A potential noninvasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J Control Release. 2017;261:187-198.
  • 20. Alcalá-Barraza SR, Lee MS, Hanson LR, et al. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target. 2010 Apr;18(3):179-90.
  • 21. Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release. 2018;270:89-100.
  • 22. Wang Z, Xiong G, Tsang WC, et al. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370(3):593-601.
  • 23. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268-286.
  • 24. Trapani A, De Giglio E, Cometa S, et al. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur J Pharm Biopharm. 2021;167:189-200.
  • 25. Uppuluri CT, Ravi PR, Dalvi AV. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int J Pharm. 2021;606:120881.
  • 26. Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia [published correction appears in J Alzheimers Dis. 2015;45(4):1269- 70.
  • 27. Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29-38.
  • 28. Kamei N, Tanaka M, Choi H, et al. Effect of an enhanced nose-tobrain delivery of insulin on mild and progressive memory loss in the senescence-accelerated mouse. Mol Pharm. 2017;14(3):916- 927.
  • 29. Stockhorst U, de Fries D, Steingrueber HJ, et al. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav. 2004;83(1):47-54.
  • 30. Schneider R, Osterburg J, Buchner A, et al. Effect of intranasally administered cholecystokinin on encoding of controlled and automatic memory processes. Psychopharmacol. 2009;202(4):559- 567.
  • 31. Pietrowsky R, Claassen L, Frercks H, et al. Time course of intranasally administered cholecystokinin-8 on central nervous effects. Neuropsychobiology. 2001;43(4):254-259.
  • 32. Rodríguez Cruz Y, Strehaiano M, Rodríguez Obaya T, et al. An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APPSwe transgenic mouse model of Alzheimer’s Disease. J Alzheimers Dis. 2017;55(1):231-248.
  • 33. Rama R, Garzón F, Rodríguez-Cruz Y, et al. Neuroprotective effect of Neuro-EPO in neurodegenerative diseases: "Alea jacta est". Neural Regen Res. 2019;14(9):1519-1521.
  • 34. Santos-Morales O, Díaz-Machado A, Jiménez-Rodríguez D, et al. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: a randomized, parallel, open-label safety study. BMC Neurol. 2017;17(1):129.
  • 35. Merelli A, Rodríguez JCG, Folch J, et al. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol. 2018;16(10):1484-1498.
  • 36. Teste IS, Tamos YM, Cruz YR, et al. Dose effect evaluation and therapeutic window of the neuro-EPO nasal application for the treatment of the focal ischemia model in the Mongolian gerbil. Scientific World Journal. 2012;2012:607498.
  • 37. Macias-Velez RJ, Fukushima-Díaz de León L, Beas-Zárate C, Rivera-Cervantes MC. Intranasal erythropoietin protects CA1 hippocampal cells, modulated by specific time pattern molecular changes after ischemic damage in rats. J Mol Neurosci. 2019;68(4):590-602.
  • 38. Wellhöner P, Hörster R, Jacobs F, et al. Intranasal application of the melanocortin 4 receptor agonist MSH/ACTH(4–10) in humans causes lipolysis in white adipose tissue. Int J Obes 2012;36:703-708.
  • 39. Fehm HL, Smolnik R, Kern W, et al. The melanocortin melanocytestimulating hormone/adrenocorticotropin(4–10) decreases body fat in humans. J Clin Endocrinol Metab. 2001;86;1144-1148.
  • 40. Mischley LK, Conley KE, Shankland EG, et al. Central nervous system uptake of intranasal glutathione in parkinson’s disease. NPJ Parkinsons Dis. 2016;2:16002.
  • 41. Mischley LK, Leverenz JB, Lau RC, et al. A randomized, doubleblind phase i/iia study of intranasal glutathione in parkinson’s disease. Mov Disord. 2015;30:1696-1701.
  • 42. Chen TC, da Fonseca CO, Schönthal AH. Intranasal perillyl alcohol for glioma therapy: molecular mechanisms and clinical development. Int J Mol Sci. 2018;19(12):3905.
  • 43. DA Fonseca CO, Teixeira RM, Silva JCT, et al. Long-term outcome in patients with recurrent malignant glioma treated with perillyl alcohol inhalation. Anticancer Res. 2013;33:5625-5631.
  • 44. Nehra G, Andrews S, Rettig J, et al. Intranasal administration of the chemotherapeutic perillyl alcohol results in selective delivery to the cerebrospinal fluid in rats. Sci Rep. 2021;11(1):6351.
  • 45. Schönthal AH, Peereboom DM, Wagle N, et al. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol Adv. 2021;3(1):vdab005.
  • 46. Derad I, Sayk F, Lehnert H, et al. Intranasal angiotensin II in humans reduces blood pressure when angiotensin II type 1 receptors are blocked. Hypertension. 2014;63:762-767.
  • 47. Chiaretti A, Conti G, Falsini B, et al. Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj. 2017;31:1538-1547.
  • 48. Ibrahim SS, Abo Elseoud OG, Mohamedy MH, et al. Nose-tobrain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology. 2021;197:108738.
  • 49. Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. Mol Biomed. 2020;1(1):15.
  • 50. Clinical trials of intranasal drug administration worldwide. https://clinicaltrials.gov/ct2/results? cond=brain&term=intranasal&cntry=&state=&city=&dist= access date 03.10.2022.
  • 51. Clinical trials of intranasal drug administration in Turkey. https://clinicaltrials.gov/ct2/results? cond=&term=intranasal&cntry=TR&state=&city=&dist= access date 03.10.2022.
APA ünüvar s, Sandal S (2023). Physiology of nose-to-brain pathways and current approaches to intranasal treatment. , 628 - 634. 10.5455/annalsmedres.2022.10.325
Chicago ünüvar songül,Sandal Suleyman Physiology of nose-to-brain pathways and current approaches to intranasal treatment. (2023): 628 - 634. 10.5455/annalsmedres.2022.10.325
MLA ünüvar songül,Sandal Suleyman Physiology of nose-to-brain pathways and current approaches to intranasal treatment. , 2023, ss.628 - 634. 10.5455/annalsmedres.2022.10.325
AMA ünüvar s,Sandal S Physiology of nose-to-brain pathways and current approaches to intranasal treatment. . 2023; 628 - 634. 10.5455/annalsmedres.2022.10.325
Vancouver ünüvar s,Sandal S Physiology of nose-to-brain pathways and current approaches to intranasal treatment. . 2023; 628 - 634. 10.5455/annalsmedres.2022.10.325
IEEE ünüvar s,Sandal S "Physiology of nose-to-brain pathways and current approaches to intranasal treatment." , ss.628 - 634, 2023. 10.5455/annalsmedres.2022.10.325
ISNAD ünüvar, songül - Sandal, Suleyman. "Physiology of nose-to-brain pathways and current approaches to intranasal treatment". (2023), 628-634. https://doi.org/10.5455/annalsmedres.2022.10.325
APA ünüvar s, Sandal S (2023). Physiology of nose-to-brain pathways and current approaches to intranasal treatment. Annals of Medical Research, 30(5), 628 - 634. 10.5455/annalsmedres.2022.10.325
Chicago ünüvar songül,Sandal Suleyman Physiology of nose-to-brain pathways and current approaches to intranasal treatment. Annals of Medical Research 30, no.5 (2023): 628 - 634. 10.5455/annalsmedres.2022.10.325
MLA ünüvar songül,Sandal Suleyman Physiology of nose-to-brain pathways and current approaches to intranasal treatment. Annals of Medical Research, vol.30, no.5, 2023, ss.628 - 634. 10.5455/annalsmedres.2022.10.325
AMA ünüvar s,Sandal S Physiology of nose-to-brain pathways and current approaches to intranasal treatment. Annals of Medical Research. 2023; 30(5): 628 - 634. 10.5455/annalsmedres.2022.10.325
Vancouver ünüvar s,Sandal S Physiology of nose-to-brain pathways and current approaches to intranasal treatment. Annals of Medical Research. 2023; 30(5): 628 - 634. 10.5455/annalsmedres.2022.10.325
IEEE ünüvar s,Sandal S "Physiology of nose-to-brain pathways and current approaches to intranasal treatment." Annals of Medical Research, 30, ss.628 - 634, 2023. 10.5455/annalsmedres.2022.10.325
ISNAD ünüvar, songül - Sandal, Suleyman. "Physiology of nose-to-brain pathways and current approaches to intranasal treatment". Annals of Medical Research 30/5 (2023), 628-634. https://doi.org/10.5455/annalsmedres.2022.10.325