Yıl: 2023 Cilt: 38 Sayı: 2 Sayfa Aralığı: 201 - 208 Metin Dili: İngilizce DOI: 10.5505/tjo.2023.3855 İndeks Tarihi: 06-06-2023

The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research

Öz:
OBJECTIVE To validate the feasibility of electronic portal imaging device (EPID)- based in vivo dosimetry system for the verification of small animal radiation research METHODS The workflow can be divided into three steps. In the first part, external body of the rat phantom was modeled based on the computed tomography (CT) dataset of a real rat previously scanned for another radiobiological experiment and the structure set was exported to 3D Slicer program to convert DICOM file to. stl file format. Tissue-equivalent rat phantom was, then, printed using Makerbot Replicator Z18 3D-printer. In the second part, treatment plans were created for different anatomical sites including whole brain and total lung irradiation using Elekta Versa HD linear accelerator. In the last part, measurements were performed with EPID-based 3D in vivo dosimetry system. During the analysis, 3D γ analysis method was used and γ evaluation criteria were set to 3 mm distance-to-agreement and 3% dose differences for local dose. RESULTS According to our analysis, EPID measurement for each modality and anatomical site met the protocol value except for % γ≤1 and γ mean values for total lung irradiation, but both of these parameters met the proposed minor variation criteria. CONCLUSION Implementation of EPID-based 3D in vivo dosimetry for preclinical radiation research with small animals seems to be feasible.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Parodi K, Assmann W, Belka C, Bortfeldt J, Clevert DA, Dedes G, et al. Towards a novel small animal proton irradiation platform: the SIRMIO project. Acta Oncol 2019;58(10):1470–5.
  • 2. Tillner F, Thute P, Bütof R, Krause M, Enghardt W. Preclinical research in small animals using radiotherapy technology–a bidirectional translational approach. Zeitschrift für Medizinische Physik 2014:24(4)335–51.
  • 3. Biglin ER, Price GJ, Chadwick AL, Aitkenhead AH, Williams KJ, Kirkby KJ. Preclinical dosimetry: Exploring the use of small animal phantoms. Radiation Oncology 2019;14:134.
  • 4. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016;16(4):234–49
  • 5. Desrosiers M, DeWerd L, Deye J, Lindsay P, Murphy MK, Mitch M, et al. The importance of dosimetry standardization in radiobiology. J Res Natl Inst Stand Technol 2013;118:403–18.
  • 6. Pedersen KH, Kunugi KA, Hammer CG, Culberson WS, DeWerd LA. Radiation biology irradiator dose verification survey. Radiat Res 2016;185(2):163–8.
  • 7. Yoshizumi T, Brady SL, Robbins ME, Bourland JD. Specific issues in small animal dosimetry and irradiator calibration. Int J Radiat Biol 2011;87(10):1001–10.
  • 8. Seed TM, Xiao S, Manley N, Nikolich-Zugich J, Pugh J, Van den Brink M, et al. An interlaboratory comparison of dosimetry for a multi-institutional radiobiological research project: Observations, problems, solutions and lessons learned. Int J Radiat Biol 2016;92(2):59–70.
  • 9. Medina LA, Herrera-Penila BI, Castro-Morales MA, Garcia-Lopez P, Perez-Cardenas E, Chanona-Vilchis J, et al. Use of an orthovoltage X-ray treatment unit as a radiation research system in a small-animal cancer model. J Exp Clin Cancer Res 2008;27:57.
  • 10.Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol 2011;56(12):R55–83.
  • 11.Soultanidis G, Subiel A, Renard I, Reinhart AM, Green VL, Oelfke U, et al. Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research. Phys Med Biol 2019;64(12):12NT02.
  • 12.Esplen N, Alyaqoub E, Bazalova-Carter M. Manufacturing of a realistic mouse phantom for dosimetry of radiobiology experiments. Medical Physics 2018;46(2):1030–6.
  • 13.Welch D, Turner L, Speiser M, Randers-Pehrson G, Brenner DJ. Scattered dose calculations and measurements in a life-like mouse phantom. Radiat Res 2017;187(4):433–42.
  • 14.Welch D, Harken AD, Randers-Pehrson G, Brenner DJ. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies. Phys Med Biol 2015;60(9):3589–98.
  • 15. Price G, Biglin ER, Collins S, Aitkinhead A, Subiel A, Chadwick AL, et al. An open source heterogeneous 3D printed mouse phantom utilising a novel bone representative thermoplastic. Phys Med Biol 2020;65(10):10NT02.
  • 16.McCarroll RE, Rubinstein AE, Kingsley CV, Yang J, Yang P, Court LE. 3D-printed small-animal immobilizer for use in preclinical radiotherapy. J Am Assoc Lab Anim Sci 2015;54(5):545–8.
  • 17.Yedekci Y, Yüce Sarı S, Gültekin M, Yıldız F. Initial clinical experience with electronic portal imaging device-based in vivo dosimetry for radiotherapy in gynecological cancers. Turk J Oncol 2022;37(4):446–52
  • 18.Perks JR, Lucero S, Monjazeb AM, Li JJ. Anthropomorphic phantoms for confirmation of linear acceleratorbased small animal irradiation. Cureus 2015;7(3):e254.
APA Biltekin F, Ozyigit G (2023). The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. , 201 - 208. 10.5505/tjo.2023.3855
Chicago Biltekin Fatih,Ozyigit Gokhan The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. (2023): 201 - 208. 10.5505/tjo.2023.3855
MLA Biltekin Fatih,Ozyigit Gokhan The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. , 2023, ss.201 - 208. 10.5505/tjo.2023.3855
AMA Biltekin F,Ozyigit G The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. . 2023; 201 - 208. 10.5505/tjo.2023.3855
Vancouver Biltekin F,Ozyigit G The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. . 2023; 201 - 208. 10.5505/tjo.2023.3855
IEEE Biltekin F,Ozyigit G "The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research." , ss.201 - 208, 2023. 10.5505/tjo.2023.3855
ISNAD Biltekin, Fatih - Ozyigit, Gokhan. "The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research". (2023), 201-208. https://doi.org/10.5505/tjo.2023.3855
APA Biltekin F, Ozyigit G (2023). The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. Türk Onkoloji Dergisi, 38(2), 201 - 208. 10.5505/tjo.2023.3855
Chicago Biltekin Fatih,Ozyigit Gokhan The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. Türk Onkoloji Dergisi 38, no.2 (2023): 201 - 208. 10.5505/tjo.2023.3855
MLA Biltekin Fatih,Ozyigit Gokhan The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. Türk Onkoloji Dergisi, vol.38, no.2, 2023, ss.201 - 208. 10.5505/tjo.2023.3855
AMA Biltekin F,Ozyigit G The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. Türk Onkoloji Dergisi. 2023; 38(2): 201 - 208. 10.5505/tjo.2023.3855
Vancouver Biltekin F,Ozyigit G The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research. Türk Onkoloji Dergisi. 2023; 38(2): 201 - 208. 10.5505/tjo.2023.3855
IEEE Biltekin F,Ozyigit G "The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research." Türk Onkoloji Dergisi, 38, ss.201 - 208, 2023. 10.5505/tjo.2023.3855
ISNAD Biltekin, Fatih - Ozyigit, Gokhan. "The Use of EPID-based in vivo Dosimetry for Small Animal Radiation Research". Türk Onkoloji Dergisi 38/2 (2023), 201-208. https://doi.org/10.5505/tjo.2023.3855