Yıl: 2023 Cilt: 47 Sayı: 2 Sayfa Aralığı: 196 - 205 Metin Dili: İngilizce DOI: 10.55730/1300-011X.3078 İndeks Tarihi: 14-03-2024

Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species

Öz:
In the present study, the antihypertensive, antidiabetic, and antioxidant properties of oak peptides were determined in vitro. For this purpose, samples from most common oak species (Quercus coccifera, Quercus ilex, and Quercus cerris) were collected, the proteins were extracted and the bioactive properties of 48 different peptide fractions were monitored using a fast protein liquid chromatography. The results showed that acorn peptides had no remarkable antioxidant or antihypertensive effects. Comparing the bioactive peptides of all oak species, the peptides of Q. coccifera generally had higher DPP-IV inhibition activity than those of Q. cerris and Q. ilex. The highest DPP-IV inhibition activity was determined in Q. coccifera second peptide fraction (50.10%). To sum up, acorn peptides could positively contribute to the human health, and they could be evaluated as functional food ingredients for the prevention of type 2 diabetes.
Anahtar Kelime: Bioactive peptides antihypertensive antidiabetic antioxidative Quercus oak

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agarwal P, Gupta R (2016). Alpha-amylase inhibition can treat diabetes mellitus. Research and Reviews Journal of Medical and Health Sciences 5 (4): 1-8.
  • Ahmed M, Fatima H, Qasim M, Gul B (2017). Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complementary Medicine and Therapies 17 (1): 386. https://doi.org/10.1186/s12906-017-1894-x
  • AOCS (1993) Official methods and recommended practices. American Oil Chemists’ Society Champaign.
  • Arcan I, Yemenicioğlu A (2007). Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chemistry 103 (2): 301-312. https://doi. org/10.1016/j.foodchem.2006.07.050
  • Bhat ZF, Kumar S, Bhat HF (2017). Antihypertensive peptides of animal origin: A review. Critical Reviews in Food Science and Nutrition 57 (3): 566-578. https://doi.org/10.1080/10408398.2 014.898241
  • Bougle D, Bouhallab S (2017). Dietary bioactive peptides: Human studies. Critical Reviews in Food Science and Nutrition 57 (2): 335-343. https://doi.org/10.1080/10408398.2013.873766
  • Bukya A, Vijayakumar, TP (2013). Food Proteomics. In Y. Srivastava (Ed.), Advances in Food Science and Nutrition (pp. 77-96). Oba Ile: Science and Education Development Institute.
  • Caglar AF, Goksu AG, Cakir B, Gulseren I (2021). Tombul hazelnut (Corylus avellana L.) peptides with DPP-IV inhibitory activity: In vitro and in silico studies. Food Chemistry X 12:100151. https://doi.org/10.1016/j.fochx.2021.100151
  • Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry 44 (9): 2619-2623. https:// doi.org/10.1021/jf950833m
  • Coda R, Rizzello CG, Pinto D, Gobbetti M (2012). Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Applied and Environmental Microbiology 78 (4): 1087-1096. https://doi.org/10.1128/ AEM.06837-11
  • Dogan A, Celik I, Kaya MS (2015). Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats. Journal of Ethnopharmacology 176: 243-251. https://doi.org/10.1016/j. jep.2015.10.034
  • Dumandan NG, Angelia MRN, Belina-Aldemita MD, Torio MAO (2014). Extraction and characterization of bioactive peptides derived from the hydrolysates of total soluble proteins of pistachio nuts (Pistacia vera L.). Kimika 25 (1): 2-10. https:// doi.org/10.26534/kimika.v25i1.1-10
  • EliasRJ,KellerbySS,DeckerEA(2008).Antioxidantactivityofproteins and peptides. Critical Reviews in Food Science and Nutrition 48 (5): 430-441. https://doi.org/10.1080/10408390701425615
  • Gea-Izquierdo G, Cañellas I, Montero G (2006). Acorn production in Spanish holm oak woodlands. Forest Systems 15 (3): 339- 354. https://doi.org/10.5424/srf/2006153-00976
  • Gobbetti M, Minervini F, Rizzello CG (2007). Bioactive peptides in dairy products. In Y. H. Hui (Ed.), Handbook of Food Products Manufacturing (pp. 489-517). https://doi. org/10.1002/9780470113554.ch70
  • Gu M, Chen HP, Zhao MM, Wang X, Yang B et al. (2015). Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Science and Technology 60 (1): 213-220. https:// doi.org/10.1016/j.lwt.2014.07.052
  • Gülseren İ, Çakır B, Çağlar AF (2019). Preliminary investigations in vitro ace-inhibitory activities of tryptic peptides produced from cold press deoiled hazelnut meals. Gıda 44 (2): 309-317. https:// doi.org/10.15237/gida.GD18125
  • Gülseren I, Corredig M (2013). Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids. Journal of Agricultural and Food Chemistry 61 (13): 3242- 3251. https://doi.org/10.1021/jf3045439
  • Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R et al. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS one, 8 (9). https://doi.org/10.1371/journal.pone.0073957
  • Hatanaka T, Inoue Y, Arima J, Kumagai Y, Usuki H et al. (2012). Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chemistry 134 (2): 797-802. https:// doi.org/10.1016/j.foodchem.2012.02.183
  • Hernández-Ledesma B, del Mar Contreras M, Recio I (2011). Antihypertensive peptides: production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science 165 (1): 23-35. https://doi.org/10.1016/j.cis.2010.11.001
  • Karaca AC, Low N, Nickerson M (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International 44 (9): 2742-2750. https://doi.org/10.1016/j. foodres.2011.06.012
  • Kayacık H (1977). An overview of Turkey oak forest and their thoughts about the future. Forestist, 27 (2): 32–40.
  • Lan VTT, Ito K, Ohno M, Motoyama T, Ito S et al. (2015). Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chemistry 175: 66-73. https://doi.org/10.1016/j. foodchem.2014.11.131
  • Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB et al. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17 (6): 950. https://doi.org/10.3390/ijms17060950
  • Marklund S, Marklund G (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47 (3): 469-474.
  • Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International 91 (4): 965- 980. https://doi.org/10.1093/jaoac/91.4.965
  • Mooney C, Haslam NJ, Pollastri G, Shields DC (2012). Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PloS one, 7 (10): 1-12. https://doi.org/10.1371/ journal.pone.0045012
  • Morales D (2021). Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends in Food Science & Technology 109 116-125. https://doi.org/10.1016/j. tifs.2021.01.029
  • Murray BA, FitzGerald RJ (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Current Pharmaceutical Design 13 (8): 773-791. https://doi.org/10.2174/138161207780363068
  • Nongonierma AB, FitzGerald RJ (2013). Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39: 157-163. https://doi. org/10.1016/j.peptides.2012.11.016
  • Nongonierma AB, Mooney C, Shields DC, FitzGerald RJ (2013). Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry 141(1): 644-653. https://doi.org/10.1016/j.foodchem.2013.02.115
  • Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ (2018). Identification of novel dipeptidyl peptidase IV (DPP- IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry 244: 340-348. https://doi.org/10.1016/j. foodchem.2017.10.033
  • Park EY, Murakami H, Mori T, Matsumura Y (2005). Effects of protein and peptide addition on lipid oxidation in powder model system. Journal of Agricultural and Food Chemistry 53 (1): 137-144. https://doi.org/10.1021/jf040221e
  • Popović BM, Štajner D, Ždero R, Orlović S, Galić Z (2013). Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics. The Scientific World Journal 2013:134656. https://doi.org/10.1155/2013/134656
  • Sagdic O, Polat B, Yetim H (2022). Bioactivities of some wild fruits grown in Turkey. Erwerbs-Obstbau 64 (2) 299-305. https://doi. org/10.1007/s10341-021-00631-0
  • Sebokova E, Christ AD, Boehringer M, Mizrahi J (2007). Dipeptidyl peptidase IV inhibitors: the next generation of new promising therapies for the management of type 2 diabetes. Current Topics in Medicinal Chemistry 7 (6): 547-555. https://doi. org/10.2174/156802607780091019
  • Shahidi F, Zhong Y (2008). Bioactive peptides. Journal of AOAC International 91 (4): 914-931.
  • Sheih IC, Fang TJ, Wu TK (2009). Isolation and characterization of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chemistry 115 (1): 279-284. https://doi.org/10.1016/j.foodchem.2008.12.019
  • Sinha R, Radha C, Prakash J, Kaul P (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry 101 (4): 1484-1491. https://doi.org/10.1016/j.foodchem.2006.04.021
  • Stone AK, Karalash A, Tyler RT, Warkentin TD, Nickerson MT (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International 76 (1): 31-38. https://doi.org/10.1016/j. foodres.2014.11.017
  • Tejerina D, García-Torres S, de Vaca MC, Vázquez F M, Cava R (2011). Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “montanera” feeding of Iberian pig: Intra-and inter-annual variations. Food Chemistry 124 (3): 997-1004. https://doi.org/10.1016/j. foodchem.2010.07.058
  • Trabuco LG, Lise S, Petsalaki E, Russell RB (2012). PepSite: prediction of peptide-binding sites from protein surfaces. Nucleic Acids Research 40 (1): 423-427. https://doi.org/10.1093/nar/gks398
  • Tsai JS, Lin YS, Pan BS, Chen TJ (2006). Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry 41 (6): 1282-1288. https://doi.org/10.1016/j.procbio.2005.12.026
  • Velarde-Salcedo AJ, Barrera-Pacheco A, Lara-González S, Montero- Morán GM, Díaz-Gois A et al. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry 136 (2): 758-764. https://doi.org/10.1016/j. foodchem.2012.08.032
  • Vinha AF, Barreira JC, Costa AS, Oliveira MBP (2016). A new age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns. Comprehensive Reviews in Food Science and Food Safety 15 (6): 947-981. https://doi.org/10.1111/1541-4337.12220
  • Volpe M, Savoia C, De Paolis P, Ostrowska B, Tarasi D et al. (2002). The renin-angiotensin system as a risk factor and therapeutic target for cardiovascular and renal disease. Journal of the American Society of Nephrology 13 (3): 173-178. https://doi. org/10.1097/01.ASN.0000032549.36050.78
  • Wang H, Chang-Wong T, Tang HY, Speicher DW (2010). Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. Journal of Proteome Research 9 (2): 1032-1040. https://doi.org/10.1021/ pr900927y
  • Wu J, Muir AD (2008). Isoflavone content and its potential contribution to the antihypertensive activity in soybean angiotensin I converting enzyme inhibitory peptides. Journal of Agricultural and Food Chemistry 56 (21): 9899-9904. https:// doi.org/10.1021/jf801181a
  • Xie Z, Huang J, Xu X, Jin Z (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry 111 (2): 370-376. https://doi.org/10.1016/j. foodchem.2008.03.078
  • Xu J, Cao J, Yue J, Zhang X, Zhao Y (2018). New triterpenoids from acorns of Quercus liaotungensis and their inhibitory activity against α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B. Journal of Functional Foods 41: 232-239. https://doi.org/10.1016/j.jff.2017.12.054
  • Yaltırık F (1984). Turkey oak diagnostic manual. - Innovation printing house, Istanbul.
APA ÇAĞLAR M, ARICI M (2023). Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. , 196 - 205. 10.55730/1300-011X.3078
Chicago ÇAĞLAR Muhammed Yusuf,ARICI MUHAMMET Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. (2023): 196 - 205. 10.55730/1300-011X.3078
MLA ÇAĞLAR Muhammed Yusuf,ARICI MUHAMMET Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. , 2023, ss.196 - 205. 10.55730/1300-011X.3078
AMA ÇAĞLAR M,ARICI M Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. . 2023; 196 - 205. 10.55730/1300-011X.3078
Vancouver ÇAĞLAR M,ARICI M Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. . 2023; 196 - 205. 10.55730/1300-011X.3078
IEEE ÇAĞLAR M,ARICI M "Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species." , ss.196 - 205, 2023. 10.55730/1300-011X.3078
ISNAD ÇAĞLAR, Muhammed Yusuf - ARICI, MUHAMMET. "Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species". (2023), 196-205. https://doi.org/10.55730/1300-011X.3078
APA ÇAĞLAR M, ARICI M (2023). Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. Turkish Journal of Agriculture and Forestry, 47(2), 196 - 205. 10.55730/1300-011X.3078
Chicago ÇAĞLAR Muhammed Yusuf,ARICI MUHAMMET Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. Turkish Journal of Agriculture and Forestry 47, no.2 (2023): 196 - 205. 10.55730/1300-011X.3078
MLA ÇAĞLAR Muhammed Yusuf,ARICI MUHAMMET Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. Turkish Journal of Agriculture and Forestry, vol.47, no.2, 2023, ss.196 - 205. 10.55730/1300-011X.3078
AMA ÇAĞLAR M,ARICI M Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. Turkish Journal of Agriculture and Forestry. 2023; 47(2): 196 - 205. 10.55730/1300-011X.3078
Vancouver ÇAĞLAR M,ARICI M Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species. Turkish Journal of Agriculture and Forestry. 2023; 47(2): 196 - 205. 10.55730/1300-011X.3078
IEEE ÇAĞLAR M,ARICI M "Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species." Turkish Journal of Agriculture and Forestry, 47, ss.196 - 205, 2023. 10.55730/1300-011X.3078
ISNAD ÇAĞLAR, Muhammed Yusuf - ARICI, MUHAMMET. "Antioxidant, antidiabetic, and antihypertensive effects of peptides from some Quercus species". Turkish Journal of Agriculture and Forestry 47/2 (2023), 196-205. https://doi.org/10.55730/1300-011X.3078