New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions

Yıl: 2023 Cilt: 32 Sayı: SI-3 Sayfa Aralığı: 248 - 261 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1842 İndeks Tarihi: 12-06-2023

New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions

Öz:
We present a broad view of present-day motions and deformations derived from uniform processing of GNSS observations within the Nubia-Arabia-Eurasia zone of plate interaction. The new observations we present provide a ~29% increase in the number of velocity determinations, a reduction in average station spacing from ~76 km to ~39 km, and an improvement in velocity uncertainties (for <1 mm/year), from 180 to 578 sites compared to our prior published solution (Reilinger et al., 2006). We use these new constraints to better evaluate the role of faults and blocks in controlling the character of continental deformation within the zone of plate interactions. Simple elastic block models show that internal deformation of the region occurs in large part on mapped, seismically active fault systems, indicating elastic behavior of the seismogenic crust (above ~15 km). For example, eastern central Anatolia, an area of > ~126,000 km2, bounded by the North and East Anatolian Faults exhibits internal velocity differences of <0.5 mm/year, indicating strain rates of < ~1.5 nanostrain/year. Geodetically constrained fault slip rates obtained from this simplified approach are comparable to geologic rates, indicating that major faults have controlled the recent geologic evolution of the region (i.e. 5–10 Myr). The pattern of present-day deformation, including increasingly fast motions towards the Hellenic trench, and the roughly simultaneous opening of all the major Mediterranean basins in the early Miocene with the slowing of the Nubia-Eurasia convergence, support conceptual models that foundering and rollback of the subducted Nubian slab beneath the Aegean is the primary mechanism responsible for present-day motion and internal deformation of the Anatolian-Aegean region.
Anahtar Kelime: Anatolia Aegean GNSS deformation subduction geodynamics Mediterranean

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B et al. (2011). Zagros orogeny: a subduction-dominated process. Geological magazine 148: 692-725. https://doi.org/10.1017/ S001675681100046X
  • Argus DF, Gordon RG (1996). Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry. Journal of Geophysical Research 101 (B6): 13555–13572. https://doi.org/10.1029/95jb03775
  • Aktuğ B, Nocquet JM, Cingöz A, Parsons B, Erkan Y et al. (2009). Deformation in western Turkey from a combination of permanent and campaign GPS data: Limits to block behavior. Journal of Geophysical Research 114: B10404. https://doi. org/10.1029/2008JB006000
  • Allmendinger RW, Reilinger R, Loveless J (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 26: TC3013. https://doi.org/10.1029/2006TC002030
  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research Solid Earth 121: 6109-6131. https://doi. org/10.1002/2016JB013098
  • Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X (2017). ITRF2014 plate motion model. Geophysical Journal International 209: 1906-1912. https://doi.org/10.1093/gji/ggx136
  • Altunel E, Barka A (1998). Eskişehir Fay Zonu’nun İnönü-Sultandere arasındaki neotektonik aktivitesi. Türkiye Jeoloji Bülteni 2: 41-52 (in Turkish with English abstract).
  • Armijo R, Meyer B, King G, Rigo A, Papanastassiou D (1996). Quaternary evolution of the Gulf of Corinth rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal of the Royal Astronomical Society 126: 11- 53. https://doi.org/10.1111/j.1365-246X.1996.tb05264.x
  • Aslan G, Lasserre C, Çakır Z, Ergintav S, Özarpaci S et al. (2019). Shallow creep along the 1999 Izmit earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017). Journal of Geophysical Research: Solid Earth 124: 2218– 2236. https://doi. org/10.1029/2018JB017022
  • Barazangi M, Sandvol E, Doğan D (2006). Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. In: Dilek Y, and Pavlides S, (editors). Post-collisional tectonics and magmatism in the Mediterranean region and Asia, Geological Society of America, Special Paper 409: 463-474. https://doi. org/10.1130/2006.2409(22)
  • Barbot S, Weiss JR (2021). Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia, Geophysical Journal International 226 (1): 422–445. https://doi.org/10.1093/ gji/ggab078
  • Barka A, Reilinger R (1997). Active tectonics of the eastern Mediterranean region: Deduced from GPS, neotectonic, and seismicity data. Annali Geofisica 40: 587-610. https://doi. org/10.4401/ag-3892
  • Blewitt G, Lavallée D (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research 107 (B7): 2145. https:// doi.org/10.1029/2001JB000570
  • Blewitt G, Lavallée D (2003). Correction to “Effect of annual signals on geodetic velocity”. Journal of Geophysical Research 108 (B1): 2010. https://doi.org/10.1029/2002JB002297
  • Biryol CB, Beck SL, Zandt G, Özacar AA (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International 184: 1037-1057. https://doi.org/10.1111/j.1365- 246X2010.04910.x
  • Bondár I, Storchak DA (2011). Improved location procedures at the International Seismological Centre. Geophysical Journal of International 186: 1220-1244. https://doi.org/ 10.1111/j.1365- 246X.2011.05107.x
  • Bozkurt E, Satir M (2000). The southern Menderes Massif (western Turkey); geochronology and exhumation history. Geological Journal 35: 285–296. https://doi.org/10.1002/gj.849
  • Briole P, Rigo A, Lyon Caen H, Ruegg JC, Papazissi K et al. (2000). Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research 105: 25605-25625. https://10.1029/2000JB900148
  • Burchfiel BC, Tzankov T, Nakov R, Royden LH (2000). Northern part of the Aegean extensional regime. Geological Society, London, Special Publications 173(1): 325-352. https://doi.org/10.1144/ GSL.sp.2000.173.01.16
  • Cavalié O, Jónsson S (2014). Block-like plate movements in eastern Anatolia observed by InSAR. Geophysical Research Letters 41: 1-6. https://doi.org/ 10.1002/2013GL058170
  • Çakır Z, Ergintav S, Özener H, Doğan U, Akoğlu A et al. (2012). Onset of aseismic creep on major strike slip faults. Geology 40 (12): 1115– 1118. https://10.1130/G33522.1
  • Cloetingh S, van der Beek A, van Rees D, Roep TB, Biermann C et al. (1992). Flexural interaction and the dynamics of Neogene extensional basin formation in the Alboran-Betic region. Geo Marine Letters 12: 66-75. https://doi.org/10.1007/BF02084914
  • Dewey JF, Helman ML, Turko E, Hutton DH, Knott SD (1989). Kinematics of the western Mediterranean. Geological Society London Special Publications 45: 265-283. https://doi.org/10.1144/GSL.SP.1989.045.01.15
  • Dixon JE, Robertson AHF (1984). The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17. https://doi.org/10.1144/GSL. SP.1984.017.01.02
  • Emre O, Duman TY, Özalp S, Olgun S, Şaroğlu F (2013). Active Fault Map of Turkey with an Explanatory Text, General Directorate of Mineral Research and Exploration, Special Publication Series 30, Ankara, Turkey.
  • England P, McKenzie D (1982). A thin viscous sheet model for continental deformation. Geophysical Journal International 70 (2): 295-321. https://doi.org/10.1111/j.1365-246X.1982. tb04969.x
  • England P, Howell A, Jackson, Synolakis C (2015). Paleotsunamis and tsunami hazards in the Eastern Mediterranean. Philosophical Transactions of the Royal Society A 373: 20140374-20140374. http://doi.org/10.1098/rsta.2014.0374
  • England P, Houseman G, Nocquet JM (2016). Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean. Journal of Geophysical Research 121: 8888– 8916. https://doi.org/10.1002/2016JB013382
  • Ergintav S, McClusky S, Hearn E, Reilinger RE, Çakmak R et al. (2009). Seven years of postseismic deformation following the 1999, M = 7.4 and M = 7.2, Izmit Düzce, Turkey earthquake sequence. Journal of Geophysical Research 114: B07403. https://doi.org/10.1029/2008JB006021
  • Ergintav S, Reilinger RE, Çakmak R, Floyd M, Çakır Z et al. (2014). Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters 41: 5783-5788. https://doi. org/10.1002/2014GL060985
  • Floyd MA, Billiris H, Paradissis D, Veis G, Avallone A et al. (2010). A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research 115: B10403. https://doi.org/10.1029/2009JB007040
  • Floyd MA, King R, Paradisis D, Karabulut S, Ergintav S et al. (2022). Variations in Coupling and Deformation Along the Hellenic Subduction Zone. Turkish Journal of Earth Sciences.
  • Ganas A, Oikonomou I, Tsimi C (2013). NOA faults: a digital database for active faults in Greece. Bulletin of the Geological Society of Greece 47 (2): 518-530. https://doi.org/10.12681/ bgsg.11079
  • Goldsworthy M, Jackson J, Haines J (2002). The continuity of active fault systems in Greece. Geophysical Journal International 148: 596-618. https://doi.org/10.1046/j.1365-246X.2002.01609.x
  • Gomez FW, Cochran R, Yassminh R, Jaafar R, Reilinger R et al. (2020). Fragmentation of the Sinai Plate indicated by spatial variation in present-day slip rate along the Dead Sea Fault system. Geophysical Journal International 221 (3): 1913-1940. https://doi.org/10.1093/gji/ggaa095
  • Gordon RG (1998). The plate tectonic approximation: Plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annual Review of Earth and Planetary Sciences 26 (1): 615–642. https://doi.org/10.1146/annurev. earth.26.1.615
  • Güvercin SE, Konca AÖ, Özbakır AD, Ergintav S, Karabulut H (2021). New focal mechanisms reveal fragmentation and active subduction of the Antalya slab in the Eastern Mediterranean. Tectonophysics 805: 228792. https://doi.org/10.1016/j. tecto.2021.228792
  • Hatzfeld D, Martinod J, Bastet G, Gautier P (1997). An analog experiment for the Aegean to describe the contribution of gravitational potential energy. Journal of Geophysical Research 102 (B1): 649– 659, https://doi.org/10.1029/96JB02594
  • Hatzfeld D, Molnar P (2010). Comparisons of the kinematics and deep structures of Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews Geophysics 48: RG2005. https://doi. org/10.1029/2009RG000304
  • Herring TA, King RW, Floyd MA, McClusky SC (2018). Introduction to GAMIT/GLOBK. In release 10.7, pp. 54, Massachusetts Institute of Technology.
  • Houseman GA, Molnar P (1997). Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International 128(1): 125–150. https://doi.org/10.1111/j.1365- 246X.1997.tb04075.x
  • Hubert-Ferrari A, Armijo R, King G, Meyer B, and Barka A (2002). Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth 107: 2235. https://doi.org/10.1029/2001JB000393
  • Jolivet L, Faccenna C (2000). Mediterranean extension and the Africa-Eurasia Collision. Tectonics 19: 1095-1106. https://doi. org/10.1029/2000TC900018
  • Jackson J, McKenzie DP (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International 93: 45-73. https://doi. org/10.1111/j.1365-246X.1988.tb01387.x
  • Jackson J (1994). Active tectonics of the Aegean region. Annual Review of Earth and Planetary Sciences 22: 239-271. https:// doi.org/10.1146/annurev.ea.22.050194.001323
  • Karabulut H, Özbakır AD (2018). Pn tomography of the Eastern Mediterranean Region. In: EGU General Assembly Conference Abstracts; Vienna. Vol. 20, p. 8663.
  • Karabulut H, Aksarı D, Değer Özbakır AD, Paul A (2019a). A new P-wave tomographic model of the Aegean-Anatolia Domain and its implications for small scale dynamics. In: EGU General Assembly Conference Abstracts; Vienna. Vol. 21, p. 10365.
  • Karabulut H, Paul A, Özbakır AD, Ergün T, Şentürk S (2019b). A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International 218 (1): 57–73. https://doi.org/10.1093/gji/ggz147
  • Kennett BLN, Engdahl ER and Buland R (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International 122 (1): 108-124. https://doi.org/10.1111/ j.1365-246X.1995.tb03540.x
  • Kreemer C, Blewitt G, Klein EC (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems 15(10): 3849-3889. https://doi. org/10.1002/2014GC005407.
  • Krijgsman, W, Garces M (2004). Paleomagnetic constraints on the geodynamic evolution of the Gibraltar arc.Terra Nova 16 (5): 281-287. https://doi.org/10.1111/j.1365-3121.2004.00564.x
  • Le Pichon X, Angelier J (1979). The Hellenic arc and trench system: A key to the evolution of the Eastern Mediterranean area. Tectonophysics 60: 1-42.
  • Le Pichon X, Chamot-Rooke N, Lallemant S, Noomen R, Veis G (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Journal of Geophysical Research 100 (B7): 12: 675-690. https://doi.org/10.1029/95JB00317
  • Le Pichon X, Kreemer C (2010). The Miocene to present kinematic evolution of the Eastern Mediterranean and Middle East and its Implications for dynamics. Annual Reviews Earth Planetary Sciences 38: 323-351. https://doi.org/10.1146/annurev- earth-040809-152419
  • Martinod J, Hatzfeld D, Savvaidis P, Kasambalos K (1997). Rapid N-S extension in the Mygdonian graben (northern Greece) deduced from repeated geodetic surveys. Geophysical Research Letters 24: 3293-3296. https://doi.org/10.1029/97GL03186
  • McCaffrey R (2002). Crustal block rotations and plate coupling. Plate Bounday Zones. In: Stein S, Freymueller J (editors). Geodynamic Series 30: 101-122, AGU, Washington, DC. https://doi.org/10.1029/GD030p0101
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105 (B3): 5695– 5719. https://doi. org/10.1029/1999JB900351
  • McKenzie DP (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society 30: 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003). Cenozoic evolution of the Neotethys and implications for the causes of plate motions. Geophysical Research Letters 30: 2036. https:// doi.org/10.1029/2003GL017992
  • McQuarrie N, van Hinsbergen DJJ (2013). Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology 41: 315-318. https://doi.org/10.1130/G33591.1
  • Mutlu AK, Karabulut H (2011). Anisotropic Pn tomography of Turkey and adjacent regions. Geophysical Journal International 187 (3): 1743-1758. https://doi.org/10.1111/ j.1365-246X.2011.05235.x
  • Nocquet JM (2012). Present-day kinematics of the Mediterranean: A comprehensive review of GPS results. Tectonophysics 579: 220-242. https://doi.org/10.1016/j.tecto.2012.03.037
  • Ocakoğlu F (2007). A re-evaluation of the Eskisehir fault zone as a recent extensional structure in NW Turkey. Journal of Asian Earth Sciences 31: 91-103. https://doi.org/10.1016/j. jseaes.2007.05.002
  • Oral MB, Reilinger RE, Toksöz MN, Barka A, Kınık I (1993). Preliminary Results of 1988 and 1990 GPS Measurements in Western Turkey and their Tectonic Implications. In: Smith DE, Turcotte DL (editors), Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, Crustal Dynamics Series 23, American Geophysical Union, Washington.
  • Özbey V, Şengör AMC, Özeren M (2022). Tectonics in a very slowly deforming region in an orogenic belt. Tectonophysics 827: 229272. https://doi.org/10.1016/j.tecto.2022.229272
  • Özeren M, Holt W (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophysical Journal International 183 (3): 1165–1184. https://doi.org/10.1111/j.1365-246X.2010.04819.x
  • Özarpacı S, Doğan U, Ergintav S, Çakır Z, Özdemir A et al. (2021) Present GPS velocity field along 1999 Izmit rupture zone: evidence for continuing afterslip 20 yr after the earthquake, Geophysical Journal International 224 (3): 2016– 2027. https://doi.org/10.1093/gji/ggaa560
  • Özbakır AD, Govers R, Wortel R (2017). Active faults in the Anatolian-Aegean plate boundary region with Nubia. Turkish Journal of Earth Sciences 16: 30-56. https://doi.org/10.3906/ yer-1603-4
  • Pearce F, Rondenay D, Sachpazi S, Charalampakis M, Royden LH (2012). Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. Journal of Geophysical Research 117: B07306. https://doi:10.1029/2011JB009023
  • Reilinger R, McClusky S (2011). Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International 186: 971-979. https://doi. org//j.1365-246X.2011.05133.x
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in the Africa Arabia Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research 111: B05411. https://doi.org/10.1029/2005JB004051
  • Royden L (1993). The tectonic expression of slab pull at continental convergent boundaries. Tectonics 12: 303-325. https://doi. org/10.1029/92TC02248
  • Royden L, Faccenna C (2018). Subduction orogeny and the late Cenozoic evolution of the Mediterranean arcs. Annual Review of Earth and Planetary. Sciences 46: 261-89. https://doi. org/10.1146/annurev-earth-060115-012419
  • Seyitoğlu G, Aktuğ B, Esat K, Kaypak B (2022). Neotectonics of Turkey (Türkiye) and surrounding regions: a new perspective with block modelling. Geologica Acta, 20 (4): 1-21. https://doi. org/10.1344/GeologicaActa2022.20.4
  • Şengör AMC, Tüysüz O, İmren C, Sakinc M, Eyidogan H (2004). The North Anatolian fault: A new look. Annual Reviews of Earth and Planetary Sciences 33: 1-75. https://doi.org/10.1146/ annurev.earth.32.101802.120415
  • Şengör AMC, Özeren S, Genç T, Zor E (2003). East Anatolian high plateau as a mantle supported, north south shortened domal structure. Geophysical Research Letters 30: 8045. https://doi. org/10.1029/2003GL017858
  • Şengör AMC, Görür N, Şaroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike--slip Faulting and Basin Formation. IN: Biddle KT, Christie-Blick N (editors). Society of Economic Paleontologists and Mineralogists 37: 227-264. https://doi. org/10.2110/pec.85.37.0227
  • Şengör AMC, Satır M, Akkök R (1964). Timing of tectonic events Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3: 693-707. https://doi.org/10.1029/TC003i007p00693
  • Şengör AMC, Yazıcı M (2020). The aetiology of the neotectonic evolution of Turkey. Mediterranean Geoscience Reviews 2: 327– 339. https://doi.org/10.1007/s42990-020-00039-0
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75: 181-241. https://doi. org/10.1016/0040-1951(81)90275-4
  • Smith DE, Kolenkiewicz R, Robbins JW, Dunn PJ, Torrence MH (1994). Horizontal crustal motion in the central and eastern Mediterranean inferred from Satellite Laser Ranging measurements. Geophysical Research Letters 21: 1979-1982. https://doi.org/10.1029/94GL01612
  • Spakman W, Wortel R (2004). A Tomographic View on Western Mediterranean Geodynamics. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A. (editors) The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Springer, Berlin, Heidelberg.
  • Sternai P, Jolivet L, Menant A, Gerya T (2014). Driving the upper plate surface deformation by slab rollback and mantle flow. Earth and Planetary Science Letters 405: 110-118. https://doi. org/10.1016/j.epsl.2014.08.023
  • Tiryakioğlu İ, Floyd M, Erdoğan S, Gülal E, Ergintav S et al. (2013). GPS constraints on active deformation in the Isparta Angle region of SW Turkey. Geophysical Journal International 195 (3): 1455–1463. https://doi.org/10.1093/gji/ggt323
  • Turcotte DL, Shubert G (2002). Geodynamics, 2nd edition, Cambridge Univ. Press, Cambridge, UK.
  • Vernant P (2015). What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics 644-645: 22-39. https://doi.org/10.1016/j. tecto.2015.01.013-0040-1951
  • Walters RJ, Parsons B, Wright TJ (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. Journal of Geophysical Research Solid Earth 119: 5215– 5234. https://doi. org/10.1002/2013JB010909
  • Wright TJ, Elliott JR, Wang H, Ryder I (2013). Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere. Tectonophysics 609: 504-523. https:// doi.org/ 10.1016/j.tecto.2013.07.029
  • Yılmaz H, Över S, Özden S (2006). Kinematics of the East Anatolian fault between Türkoğlu (Kahramanmaraş) and Çelikhan (Adıyaman), Earth, Planets, and Space 58 (11): 1463-1473. https://doi.org/10.1186/BF03352645
  • Zabcı C (2019). Spatio-temporal behaviour of continental transform faults: implications from the late Quaternary slip history of the North Anatolian Fault, Turkey. Canadian Journal of Earth Sciences 56 (11): 1218-1238. https://doi.org/10.1139/cjes- 2018-0308
APA ergintav s, Floyd M, PARADISSIS D, Karabulut H, Vernant P, MASSON F, GEORGIEV I, Konca A, Doğan U, KING R, REILINGER R (2023). New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. , 248 - 261. 10.55730/1300-0985.1842
Chicago ergintav semih,Floyd Michael,PARADISSIS Demitris,Karabulut Hayrullah,Vernant Philippe,MASSON Frederic,GEORGIEV Ivan,Konca Ali Ozgun,Doğan Uğur,KING Robert,REILINGER ROBERT New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. (2023): 248 - 261. 10.55730/1300-0985.1842
MLA ergintav semih,Floyd Michael,PARADISSIS Demitris,Karabulut Hayrullah,Vernant Philippe,MASSON Frederic,GEORGIEV Ivan,Konca Ali Ozgun,Doğan Uğur,KING Robert,REILINGER ROBERT New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. , 2023, ss.248 - 261. 10.55730/1300-0985.1842
AMA ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. . 2023; 248 - 261. 10.55730/1300-0985.1842
Vancouver ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. . 2023; 248 - 261. 10.55730/1300-0985.1842
IEEE ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R "New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions." , ss.248 - 261, 2023. 10.55730/1300-0985.1842
ISNAD ergintav, semih vd. "New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions". (2023), 248-261. https://doi.org/10.55730/1300-0985.1842
APA ergintav s, Floyd M, PARADISSIS D, Karabulut H, Vernant P, MASSON F, GEORGIEV I, Konca A, Doğan U, KING R, REILINGER R (2023). New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences, 32(SI-3), 248 - 261. 10.55730/1300-0985.1842
Chicago ergintav semih,Floyd Michael,PARADISSIS Demitris,Karabulut Hayrullah,Vernant Philippe,MASSON Frederic,GEORGIEV Ivan,Konca Ali Ozgun,Doğan Uğur,KING Robert,REILINGER ROBERT New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences 32, no.SI-3 (2023): 248 - 261. 10.55730/1300-0985.1842
MLA ergintav semih,Floyd Michael,PARADISSIS Demitris,Karabulut Hayrullah,Vernant Philippe,MASSON Frederic,GEORGIEV Ivan,Konca Ali Ozgun,Doğan Uğur,KING Robert,REILINGER ROBERT New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences, vol.32, no.SI-3, 2023, ss.248 - 261. 10.55730/1300-0985.1842
AMA ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences. 2023; 32(SI-3): 248 - 261. 10.55730/1300-0985.1842
Vancouver ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences. 2023; 32(SI-3): 248 - 261. 10.55730/1300-0985.1842
IEEE ergintav s,Floyd M,PARADISSIS D,Karabulut H,Vernant P,MASSON F,GEORGIEV I,Konca A,Doğan U,KING R,REILINGER R "New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions." Turkish Journal of Earth Sciences, 32, ss.248 - 261, 2023. 10.55730/1300-0985.1842
ISNAD ergintav, semih vd. "New geodetic constraints on the role of faults and blocks versus distributed strain in the Nubia-Arabia-Eurasia zone of active plate interactions". Turkish Journal of Earth Sciences 32/SI-3 (2023), 248-261. https://doi.org/10.55730/1300-0985.1842