Yıl: 2023 Cilt: 32 Sayı: SI-3 Sayfa Aralığı: 275 - 293 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1844 İndeks Tarihi: 12-06-2023

Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations

Öz:
The Anatolia–Aegean domain represents a broad plate boundary zone, with the deformation accommodated by major faults bounding quasi-low deforming units. First-order features of this deformation were obtained in the form of a GNSS-derived velocity field. During the last decade, the accuracy of velocity solutions was improved, and the expansion of continuous networks increased spatial resolution. Nonetheless, an accurate representation of the deformation field requires interstation distances much lower than the locking depth of nearby faults, which has not yet been satisfied. The basis for creating a precise and accurate velocity field is uniform processing of the time series recorded both in the campaign and permanent GNSS stations, at once and for a single reference system. Although for Anatolia the data density has increased 6-fold since the landmark work of Reilinger et al. (2006), this crucial integration has not been made. We aim to fill this gap by analyzing the data and providing a uniform velocity solution. In this study, we processed the time series of 836 stations, of which 178 are published for the first time. With a period of up to 28 years, we present the most accurate velocity field with increased spatial and temporal resolution and homogeneity. We used the improved coverage of the velocity field to calculate strain accumulation on the North and East Anatolian Faults. Modelled slip rates vary between 20 and 26 mm/yr and 9.7 and 11 mm/yr for the North and East Anatolian faults, respectively. The data can better constrain the kinematics of continental deformation, provide accurate boundary conditions for dynamic models, and help test outstanding hypotheses about the kinematics of the Anatolia- Aegean domain.
Anahtar Kelime: GNSS data analysis velocity field strain accumulation Turkey

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aktuğ B, Kılıçoğlu A (2006). Recent crustal deformation of Izmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics 41 (5): 471–484. https://doi.org/10.1016/j. jog.2006.01.004
  • Aktug B, Nocquet, JM, Cingöz A, Parsons B, Erkan Y et al. (2009a). Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior. Journal of Geophysical Research 114: B10404. https://doi.org/10.1029/2008JB006000
  • Aktuğ B, Kılıçoğlu A, Lenk O, Gürdal MA (2009b). Establishment of regional reference frames for detecting active deformation areas in Anatolia. Studia Geophysica et Geodaetica 2 (53): 169– 183. https://doi.org/10.1007/s11200-009-0011-0
  • Aktuğ B, Sezer S, Özdemir S, Lenk O, Kılıçoğlu A (2011). Computation of the actual coordinates and velocities of Turkish national fundamental GPS network. Harita Dergisi 145: 1-14 (in Turkish)
  • Aktuğ B, Parmaksız E, Kurt M, Lenk O, Kılıçoğlu MA et al. (2013). Deformation of Central Anatolia: GPS implications. Journal of Geodynamics 67: 78-96. https://doi.org/10.1016/j. jog.2012.05.008
  • Aktuğ B, Doğru A, Özener H, Peyret M (2015). Slip rates and locking depth variation along central and easternmost segments of North Anatolian Fault. Geophysical Journal International 202 (3): 2133–2149. https://doi.org/10.1093/gji/ggv274
  • Aktug B, Ozener H, Dogru A, Sabuncu A, Turgut B et al. (2016). Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics 94–95: 1-12. https://doi.org/10.1016/j.jog.2016.01.001
  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research 121: 6109–6131. https://doi. org/10.1002/2016JB013098
  • Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X (2017). ITRF2014 plate motion model. Geophysical Journal International 209 (3): 1906–1912. https://doi.org/10.1093/gji/ ggx136
  • Aslan G, Lasserre C, Çakir Z, Ergintav S, Özarpaci S et al. (2019). Shallow creep along the 1999 Izmit Earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017). Journal of Geophysical Research 124 (2): 2218-2236. https:// doi.org/10.1029/2018JB017022
  • Avouac J-P (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences 43: 233-271. https:// doi.org/10.1146/annurev-earth-060614-105302
  • Ayhan ME, Demir C, Lenk O, Kılıçoğlu A, Aktuğ B et al. (2002a). Turkish national fundamental GPS network -1999A (TFGN- 99A). Harita Dergisi, Special Publication 16 (in Turkish).
  • Ayhan ME, Demir C, Lenk O, Kilicoglu A, Altiner Y et al. (2002). Interseismic strain accumulation in the Marmara Sea region, Bulletin of the Seismological Society of America 92 (1): 216– 229. https://doi.org/10.1785/0120000818
  • Bilham R, Ozener H, Mencin D, Dogru A, Ergintav S et al. (2016). Surface creep on the North Anatolian Fault at Ismetpasa, Turkey, 1944–2016. Journal of Geophysical Research 121 (10): 7409-7431. https://doi.org/10.1002/2016JB013394
  • Bird P, Jackson DD, Kagan YY, Kreemer C, Stein RS (2015). GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity. Bulletin of the Seismological Society of America 105 (5): 2538-2554. https:// doi.org/10.1785/0120150058
  • Bletery Q, Cavalié O, Nocquet JM, Ragon T (2020). Distribution of interseismic coupling along the North and East Anatolian Faults inferred from InSAR and GPS data. Geophysical Research Letters 47 (16): e2020GL087775. https://doi. org/10.1029/2020GL087775
  • Blewitt G, Lavallee D (2002). Effect of Annual Signals on Geodetic Velocity. Journal of Geophysical Research 107 (B7). https://doi. org/10.1029/2001JB000570
  • Cakir Z, Akoglu AM, Belabbes S, Ergintav S, Meghraoui M (2005). Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR. Earth and Planetary Science Letters 238 (1-2): 225-234. https://doi. org/10.1016/j.epsl.2005.06.044
  • Çakir Z, Ergintav S, Özener H, Dogan U, Akoglu AM et al. (2012). Onset of aseismic creep on major strike-slip faults. Geology 40 (12): 1115-1118. https://doi.org/10.1130/G33522.1
  • Cakir Z., Ergintav S, Akoğlu AM, Çakmak R, Tatar O et al. (2014). InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation. Journal of Geophysical Research 119 (10): 7934-7943. https://doi.org/10.1002/2014JB011360
  • Cavalié O, Jónsson S (2014). Block like plate movements in eastern Anatolia observed by InSAR. Geophysical Research Letters 41 (1): 26-31. https://doi.org/10.1002/2013GL058170
  • Cetin E, Cakir Z, Meghraoui M, Ergintav S, Akoglu AM (2014). Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems 15 (7): 2883-2894. https://doi.org/10.1002/2014GC005307
  • Dogru A, Gorgun E, Ozener H, Aktug B (2014). Geodetic and seismological investigation of crustal deformation near Izmir (western Anatolia). Journal of Asian Earth Sciences 82: 21–31. https://doi.org/10.1016/j.jseaes.2013.12.008
  • Emre Ö, Duman T, Özalp S, Elmacı H, Olgun Ş et al. (2013). Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi 30, Ankara, ISBN: 978-605- 5310-56-1 (in Turkish)
  • Ergintav S, Reilinger RE, Çakmak R, Floyd M, Cakir Z et al. (2014). Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters 41: 5783–5788. https://doi. org/10.1002/2014GL060985
  • Faccenna C, Becker TW (2010). Shaping mobile belts by small-scale convection. Nature 465: 602-605. https://doi.org/10.1038/ nature09064
  • Güvercin SE, Karabulut H, Konca AÖ, Doğan U, Ergintav S (2022). Active Seismotectonics of the East Anatolian Fault. Geophysical Journal International 230 (1): 50–69. https://doi.org/10.1093/ gji/ggac045
  • Haines AJ, Dimitrova LL, Wallace LM, Williams CA (2015). Enhanced surface imaging of crustal deformation: Obtaining tectonic force fields using GPS data. New York, U.S.A: Springer. https://doi.org/10.1007/978-3-319-21578-5
  • Herring TA, King RW, Floyd MA, McClusky SC (2018). GAMIT Reference Manual, GPS Analysis at MIT, Release 10.7, http:// geoweb.mit.edu/gg/GAMIT_Ref.pdf.
  • Kreemer C, Lavallée DA, Blewitt G, Holt WE (2006). On the stability of a geodetic no-net-rotation frame and its implication for the International Terrestrial Reference Frame. Geophysical Research Lettetter 33: L17306. https://doi. org/10.1029/2006GL027058
  • Kreemer C, Blewitt G, Klein EC (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems 15 (10): 3849-3889. https://doi. org/10.1002/2014GC005407
  • Kurt Aİ, Cingöz A, Özdemir S, Peker S, Özel Ö et al. (2020). Estimation of the Updated Coordinates and Velocities of Turkish National Fundamental GNSS Network within the Context of GNSS Data Reprocessing. Harita Dergisi 164: 1-17 (in Turkish).
  • Mahmoud Y, Masson F, Meghraoui M, Cakir Z, Alchalbi A et al. (2013). Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. Journal of Geodynamics 67: 30-39. https://doi.org/10.1016/j. jog.2012.05.006
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105 (B3): 5695–5719. https://doi. org/10.1029/1999JB900351
  • Nocquet JM (2012). Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 579: 220-242. https://doi.org/10.1016/j.tecto.2012.03.037
  • Ozener H, Arpat E, Ergintav S, Dogru A, Cakmak R et al. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of Geodynamics 49 (3-4): 141–150. https://doi. org/10.1016/j.jog.2010.01.003
  • Ozener H, Yilmaz O, Dogru A, Turgut B, Gurkan O (2013a). GPS- derived velocity field of the Iznik-Mekece segment of the North Anatolian Fault Zone. Journal of Geodynamics 67: 46– 52. https://doi.org/10.1016/j.jog.2012.07.001
  • Ozener H, Dogru A, Acar M (2013b). Determination of the displacements along the Tuzla Fault (Aegean region-Turkey): preliminary results from GPS and precise leveling techniques. Journal of Geodynamics 67: 13–20. https://doi.org/10.1016/j. jog.2012.06.001
  • Ozener H, Dogru A, Turgut B (2013c). Quantifying aseismic creep on the Ismetpasa segment of the North Anatolian Fault Zone (Turkey) by 6 years of GPS observations. Journal of Geodynamics 67:72-77. https://doi.org/10.1016/j. jog.2012.08.002
  • Özarpacı S, Doğan U, Ergintav S, Çakır Z, Özdemir A, et al. (2021). Present GPS velocity field along 1999 Izmit rupture zone: evidence for continuing afterslip 20 yr after the earthquake. Geophysical Journal International 224 (3): 2016-2027. https:// doi.org/10.1093/gji/ggaa560.
  • Özbakır AD, Govers R, Wortel R (2017). Active faults in the Anatolian-Aegean plate boundary region with Nubia. Turkish Journal of Earth Sciences 26 (1): 30-56. https://doi.org/10.3906/ yer-1603-4
  • Özbey V, Özeren MS, Henry P, Klein E, Galgana G et al. (2021). Kinematics of the Marmara Region: a fusion of continuum and block models. Mediterranean Geosciences Reviews 3: 57-78. https://doi.org/10.1007/s42990-021-00051-y
  • Özeren, M.S., Holt, W.E. (2010) The dynamics of the eastern Mediterranean and eastern Turkey. Geophysical Journal International 183: 1165–1184. https://doi.org/10.1111/j.1365- 246X.2010.04819.x
  • Reilinger RE, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research 111 (B5): B05411. https://doi. org/10.1029/2005JB004051
  • Reilinger RE, McClusky S (2011). Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International 186 (3): 971–979. https://doi.org/10.1111/j.1365-246X.2011.05133.x
  • Savage JC, Burford RO (1973). Geodetic determination of relative plate motion in central California. Journal of Geophysical Research 78 (5): 832-845. https://doi.org/10.1029/ JB078i005p00832
  • Smith-Konter BR, Sandwell DT, Shearer P (2011). Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research 116 (B6). https://doi. org/10.1029/2010JB008117
  • Şengör AMC, Tüysüz O, Imren C, Sakınç M, Eyidoğan H et al. (2005). The North Anatolian fault: A new look. Annual Reviews of Earth and Planetary Science Letters 33: 37-112. https://doi. org/10.1146/annurev.earth.32.101802.120415
  • Tan O (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth System Sciences 21 (7): 2059-2073. https://doi.org/10.5194/nhess-21-2059-2021
  • Tatar O, Poyraz F, Gürsoy H, Cakir Z, Ergintav S et al. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics 518-521: 55–62. https://doi.org/10.1016/j. tecto.2011.11.010
  • Thatcher W (2009). How the Continents Deform: The Evidence From Tectonic Geodesy. Annual Review of Earth and Planetary Sciences 37: 237-262. https://doi.org/10.1146/annurev. earth.031208.100035
  • Tiryakioğlu İ, Floyd M, Erdogan S, Gülal E, Ergintav S et al. (2013). GPS constraints on active deformation in the Isparta Angle region of SW Turkey. Geophysical Journal International 195 (3): 1455–1463. https://doi.org/10.1093/gji/ggt323
  • Vernant P. (2015). What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics 644: 22-39. https://doi.org/10.1016/j.tecto.2015.01.013
  • Walters RJ, Parsons B, Wright TJ (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block like behavior of Eastern Anatolia. Journal of Geophysical Research 119 (6): 5215-5234. https://doi.org/10.1002/2013JB010909
  • Wei M, Sandwell D, Smith-Konter B (2010). Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research 46 (2): 236-249. https://doi.org/10.1016/j.asr.2010.03.013
  • Weiss JR, Walters RJ, Morishita Y, Wright TJ, Lazecky M et al. (2020). High resolution surface velocities and strain for Anatolia from Sentinel 1 InSAR and GNSS data. Geophysical Research Letters 47 (17): e2020GL087376. https://doi. org/10.1029/2020GL087376
  • Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F et al. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems 20: 5556-5564. https://doi. org/10.1029/2019GC008515
  • Wright TJ., Elliott JR, Wang H, Ryder I (2013). Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere. Tectonophysics 609: 504-523. https:// doi.org/10.1016/j.tecto.2013.07.029
  • Yavaşoğlu H, Tarı E, Tüysüz O, Çakır Z, Ergintav S (2011). Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. Journal of Geodynamics 51 (5): 339– 343. https://doi.org/10.1016/j.jog.2010.07.003.
APA KURT A, Ozbakir A, CİNGÖZ A, ergintav s, DOGAN U, ÖZARPACI S (2023). Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. , 275 - 293. 10.55730/1300-0985.1844
Chicago KURT ALI IHSAN,Ozbakir Ali Deger,CİNGÖZ Ayhan,ergintav semih,DOGAN UGUR,ÖZARPACI Seda Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. (2023): 275 - 293. 10.55730/1300-0985.1844
MLA KURT ALI IHSAN,Ozbakir Ali Deger,CİNGÖZ Ayhan,ergintav semih,DOGAN UGUR,ÖZARPACI Seda Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. , 2023, ss.275 - 293. 10.55730/1300-0985.1844
AMA KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. . 2023; 275 - 293. 10.55730/1300-0985.1844
Vancouver KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. . 2023; 275 - 293. 10.55730/1300-0985.1844
IEEE KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S "Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations." , ss.275 - 293, 2023. 10.55730/1300-0985.1844
ISNAD KURT, ALI IHSAN vd. "Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations". (2023), 275-293. https://doi.org/10.55730/1300-0985.1844
APA KURT A, Ozbakir A, CİNGÖZ A, ergintav s, DOGAN U, ÖZARPACI S (2023). Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turkish Journal of Earth Sciences, 32(SI-3), 275 - 293. 10.55730/1300-0985.1844
Chicago KURT ALI IHSAN,Ozbakir Ali Deger,CİNGÖZ Ayhan,ergintav semih,DOGAN UGUR,ÖZARPACI Seda Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turkish Journal of Earth Sciences 32, no.SI-3 (2023): 275 - 293. 10.55730/1300-0985.1844
MLA KURT ALI IHSAN,Ozbakir Ali Deger,CİNGÖZ Ayhan,ergintav semih,DOGAN UGUR,ÖZARPACI Seda Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turkish Journal of Earth Sciences, vol.32, no.SI-3, 2023, ss.275 - 293. 10.55730/1300-0985.1844
AMA KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turkish Journal of Earth Sciences. 2023; 32(SI-3): 275 - 293. 10.55730/1300-0985.1844
Vancouver KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turkish Journal of Earth Sciences. 2023; 32(SI-3): 275 - 293. 10.55730/1300-0985.1844
IEEE KURT A,Ozbakir A,CİNGÖZ A,ergintav s,DOGAN U,ÖZARPACI S "Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations." Turkish Journal of Earth Sciences, 32, ss.275 - 293, 2023. 10.55730/1300-0985.1844
ISNAD KURT, ALI IHSAN vd. "Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations". Turkish Journal of Earth Sciences 32/SI-3 (2023), 275-293. https://doi.org/10.55730/1300-0985.1844