Yıl: 2023 Cilt: 31 Sayı: 2 Sayfa Aralığı: 249 - 262 Metin Dili: İngilizce DOI: 10.55730/1300-0632.3982 İndeks Tarihi: 12-06-2023

H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications

Öz:
Millimeter-wave (mmWave) antennas are indispensable components in the fifth-generation (5G) wireless communication systems. With the inherent advantages of integration capability, substrate integrated waveguide (SIW) antenna is an excellent choice for applications in the mmWave frequency bands. However, reflection losses occur at dielectric-filled thin apertures of SIW antennas. These reflections can be overcome by impedance matching between the aperture and the free space. In this study, we introduce an mmWave SIW horn antenna having impedance matching transitions (IMTs) across the horn’s aperture width. The designed antenna, operating in the 24–28 GHz band, is simulated with a full-wave analysis tool. The simulation results of the modified SIW horn have been confirmed by the experimental results and shown to be satisfactory. The IMTs result in an enhancement of the front-to-back ratio (FTBR). The modified SIW horn antenna with a novel printed transition achieves sidelobe levels (SLLs) of better than –9 dB at 27 GHz, with an enhanced FTBR above 15 dB. In the 24–28 GHz band, the antenna has a reflection coefficient variation of better than –10 dB.
Anahtar Kelime: Millimeter-wave antennas substrate integrated waveguide horn antenna impedance matching printed transitions front-to-back ratio

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] IMT vision – framework and overall objectives of the future development of IMT for 2020 and beyond. Document Rec. ITU-R M.2083-0, ITU-R, Geneva, Switzerland, September 2015.
  • [2] Study on channel model for frequencies from 0.5 to 100 GHz. Technical Report, 3GPP TR 138.901 V14.0.0, Release 14, May 2017.
  • [3] Amendment of the commission’s rules with regard to commercial operations in the 3550–3650 MHz band. Federal Communications Commission, 47 CFR Part 96, June 2017.
  • [4] Hong W. Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microwave Magazine 2017; 18 (7): 86-102. doi: 10.1109/MMM.2017.2740538
  • [5] Lota J, Sun S, Rappaport TS, Demosthenous A. 5G uniform linear arrays with beamforming and spatial multiplexing at 28, 37, 64, and 71 GHz for outdoor urban communication: A two-level approach. IEEE Transactions on Vehicular Technology 2017; 66 (11): 9972-9985. doi: 10.1109/TVT.2017.2741260
  • [6] Xu B, Ying Z, Scialacqua L, Scannavini A, Foged LJ et al. Radiation performance analysis of 28 GHz antennas integrated in 5G mobile terminal housing. IEEE Access 2018; 6: 48088-48101. doi: 10.1109/ACCESS.2018.2867719
  • [7] Taheri MMS, Abdipour A, Zhang S, Pedersen GF. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals. IEEE Transactions on Vehicular Technology 2019; 68 (4): 4042-4046. doi: 10.1109/TVT.2019.2899178
  • [8] MacCartney GR, Rappaport TS, Sun S, Deng S. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks. IEEE Access 2015; 3: 2388–2424. doi: 10.1109/ACCESS.2015.2486778
  • [9] Ferrante S, Pietraski P, Deng T, Bielinski M. mm Wave UE antenna configuration study. In: IEEE 2015 81st Vehicular Technology Conference; Glasgow, Scotland, UK; 2015. pp. 1-6.
  • [10] Sun S, MacCartney GR, Rappaport TS. Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. In: 2016 The 10th European Conference on Antennas and Propagation; Davos, Switzerland; 2016. pp. 1-6.
  • [11] Yu B, Yang K, Sim CYD, Yang G. A novel 28 GHz beam steering array for 5G mobile device with metallic casing ap- plication. IEEE Transactions on Antennas and Propagation 2018; 66 (1): 462-466. doi: 10.1109/TAP.2017.2772084
  • [12] Ozpinar H, Aksimsek S, Turker Tokan N. A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications. IEEE Transactions on Vehicular Technology 2020; 69 (3): 2389-2397. doi: 10.1109/TVT.2020.2966009
  • [13] Helander J, Zhao K, Ying Z, Sjöberg D. Performance analysis of millimeter wave phased array antennas in cellular handsets. IEEE Antennas and Wireless Propagation Letters 2016; 15: 504-507. doi: 10.1109/LAWP.2015.2455040
  • [14] Zhang S, Chen X, Syrytsin I, Pedersen GF. A planar switchable 3D-coverage phased array antenna and its user effects for 28 GHz mobile terminal applications. IEEE Transactions on Antennas and Propagation 2017; 65 (12): 6413–6421. doi: 10.1109/TAP.2017.2681463
  • [15] Deslandes D, Wu K. Integrated transition of coplanar to rectangular waveguides. In: IEEE 2001 MTT-S Interna- tional Microwave Symposium Digest; Phoenix, AZ, USA; 2001. pp. 619-622.
  • [16] Cassivi Y, Perregrini L, Arcioni P, Bressan M, Wu K et al. Dispersion characteristics of substrate inte- grated rectangular waveguide. IEEE Microwave Wireless Components Letters 2002; 12 (9): 333–335. doi: 10.1109/LMWC.2002.803188
  • [17] Xu F, Wu K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques 2005; 53 (1): 66-73. doi: 10.1109/TMTT.2004.839303
  • [18] Deslandes D, Wu K. Single-substrate integration technique of planar circuits and waveguide filters. IEEE Transac- tions on Microwave Theory and Techniques 2003; 51 (2): 593–596. doi: 10.1109/TMTT.2002.807820
  • [19] Lee GH, Yoo CS, Kim YH, Kim JY, Park YH et al. A 60 GHz embedded SIW (substrate integrated waveguide) BPF considering the transition effect. In: 2009 Asia Pacific Microwave Conference; Singapore; 2009. pp. 1192-1195.
  • [20] Zhu Y, Chen J, Yan P. Millimeter-wave band-pass filter based on complementary split ring and SIW resonators. In: 2015 Asia Pacific Microwave Conference; Nanjing, China; 2015. pp. 1-3.
  • [21] Xu F, Wu K, Zhang X. Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide. IEEE Transactions on Antennas and Propagation 2010; 58 (2): 340-347. doi: 10.1109/TAP.2009.2026593
  • [22] Mei H, Yang X, Yu Y. SIW cavity-backed circularly polarized dual loop antenna with broadband at Ka band. In: 2016 International Symposium on Antennas and Propagation; Okinawa, Japan; 2016. pp. 710-711.
  • [23] Zhang YX, Jiao YC, Zhang L. Wideband inhomogeneous-polarizer loaded circularly polarized SIW horn antenna for broadband millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters 2019; 18 (7): 1448-1452. doi: 10.1109/LAWP.2019.2919636
  • [24] Wang L, Esquius-Morote M, Qi H, Yin X, Mosig JR. Phase corrected H-plane horn antenna in gap SIW technology. IEEE Transactions on Antennas and Propagation 2017; 65 (1): 347-353. doi: 10.1109/TAP.2016.2623656
  • [25] Cai Y, Qian ZP, Zhang YS, Jin J, Cao WQ. Bandwidth enhancement of SIW horn antenna loaded with air-via perforated dielectric slab. IEEE Antennas and Wireless Propagation Letters 2014; 13: 571-574. doi: 10.1109/LAWP.2014.2312917
  • [26] Che W, Fu B, Yao P, Chow YL, Yung EKN. A compact substrate integrated waveguide H plane horn antenna with dielectric arc lens. International Journal of RF and Microwave Computer-Aided Engineering 2007; 17 (5): 473-479. doi: 10.1002/MMCE.20237
  • [27] Wang J, Li Y, Wang J. Wideband dipole array loaded substrate-integrated horn array with improved sidelobe perfor- mance. IEEE Antennas and Wireless Propagation Letters 2019; 18 (3): 556-560. doi: 10.1109/LAWP.2019.2896600
  • [28] Esquius-Morote M, Fuchs B, Zürcher JF, Mosig JR. A printed transition for matching improvement of SIW horn an- tennas. IEEE Transactions on Antennas and Propagation 2013; 61 (4): 1923-1930. doi: 10.1109/TAP.2012.2231923
  • [29] Esquius-Morote M, Fuchs B, Mosig JR. Analytical model of a printed transition for SIW antennas. 2012 6th European Conference on Antennas and Propagation; Prague, Czech Republic; 2012. pp. 414-417.
  • [30] Esquius-Morote M, Fuchs B, Zürcher JF, Mosig JR. Novel thin and compact H-plane SIW horn antenna. IEEE Transactions on Antennas and Propagation 2013; 61 (6): 2911-2920. doi: 10.1109/TAP.2013.2254449
  • [31] Zhang Y. Deng JY, Sun D, Yin JY, Guo LX. Compact slow-wave SIW H-plane horn antenna with increased gain for vehicular millimeter wave communication. IEEE Transactions on Vehicular Technology 2021; 70 (7): 7289-7293. doi: 10.1109/TVT.2021.3090096
  • [32] Balanis CA. Advanced Engineering Electromagnetics. New York, USA: Wiley, 2012.
  • [33] Balanis CA. Antenna Theory: Analysis and Design. New York, USA: Wiley, 2005.
  • [34] Benedek P, Silvester P. Capacitance of parallel rectangular plates separated by a dielectric sheet. IEEE Transactions on Microwave Theory and Techniques 1972; 20 (8): 504–510. doi: 10.1109/TMTT.1972.1127797
  • [35] Yazdandoost KY, Gharpure DC. Simple formula for calculation of the resonant frequency of a rectangular microstrip antenna. In: IEEE 1998 5th International Symposium on Spread Spectrum Techniques and Applications; Sun City, South Africa; 1998. pp. 604-605.
APA AKGUN O, Turker Tokan N (2023). H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. , 249 - 262. 10.55730/1300-0632.3982
Chicago AKGUN OZLEM,Turker Tokan Nurhan H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. (2023): 249 - 262. 10.55730/1300-0632.3982
MLA AKGUN OZLEM,Turker Tokan Nurhan H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. , 2023, ss.249 - 262. 10.55730/1300-0632.3982
AMA AKGUN O,Turker Tokan N H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. . 2023; 249 - 262. 10.55730/1300-0632.3982
Vancouver AKGUN O,Turker Tokan N H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. . 2023; 249 - 262. 10.55730/1300-0632.3982
IEEE AKGUN O,Turker Tokan N "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications." , ss.249 - 262, 2023. 10.55730/1300-0632.3982
ISNAD AKGUN, OZLEM - Turker Tokan, Nurhan. "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications". (2023), 249-262. https://doi.org/10.55730/1300-0632.3982
APA AKGUN O, Turker Tokan N (2023). H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences, 31(2), 249 - 262. 10.55730/1300-0632.3982
Chicago AKGUN OZLEM,Turker Tokan Nurhan H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences 31, no.2 (2023): 249 - 262. 10.55730/1300-0632.3982
MLA AKGUN OZLEM,Turker Tokan Nurhan H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences, vol.31, no.2, 2023, ss.249 - 262. 10.55730/1300-0632.3982
AMA AKGUN O,Turker Tokan N H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences. 2023; 31(2): 249 - 262. 10.55730/1300-0632.3982
Vancouver AKGUN O,Turker Tokan N H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications. Turkish Journal of Electrical Engineering and Computer Sciences. 2023; 31(2): 249 - 262. 10.55730/1300-0632.3982
IEEE AKGUN O,Turker Tokan N "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications." Turkish Journal of Electrical Engineering and Computer Sciences, 31, ss.249 - 262, 2023. 10.55730/1300-0632.3982
ISNAD AKGUN, OZLEM - Turker Tokan, Nurhan. "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications". Turkish Journal of Electrical Engineering and Computer Sciences 31/2 (2023), 249-262. https://doi.org/10.55730/1300-0632.3982