Yıl: 2023 Cilt: 32 Sayı: SI-3 Sayfa Aralığı: 351 - 379 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1849 İndeks Tarihi: 12-06-2023

Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye)

Öz:
The active tectonics of Anatolia is mostly characterized by its westward motion with respect to Eurasia between the Hellenic subduction in the west and Arabia-Eurasia continental collision in the east. Although most of the deformation is suggested to be confined along Anatolia’s boundary elements, viz. the North and East Anatolian shear zones, recent studies indicate a higher magnitude of internal strain accumulation, especially along the parallel/subparallel strike-slip faults of its central province. We present the first morphochronology-based slip rate estimate for one of these strike-slip structures, the Ovacık Fault, by using cosmogenic 36Cl dating of offset fluvial deposits. At the Köseler Site (39.3643°N, 39.1688°E), two faulted risers, bounding the alluvial fan with its subplanar surface (NF1/NF1’) and the inset terrace tread (NF1/T2), are offset 19–24 and 15–22 m, respectively. The scattered surface ages and variability of $^{36}Cl$ concentrations in depth profiles suggest strong evidence for inheritance in alluvial fan and terrace deposits; thus, we used modelled depth-profile ages for both surfaces. The modelled ages 8–10 ka for NF1 and 6–8 ka for T2 yield slip-rate estimates 2.4 +0.5/–0.4 mm/a and 2.8 +0.7/–0.7 mm/a, respectively, for the upper-tread reconstruction of the NF1/NF1’and the lower-tread reconstruction of the NF1/T2. Our results together with previous slip-rate estimates for other structures show a significant internal deformation for Anatolia, especially along its subparallel strike-slip faults. These secondary faults slice Anatolia into several pieces giving rise to the formation of the Malatya-Erzincan, Cappadocian, and Central Anatolian slices, where the geometry is strongly controlled by the distribution of the Tethyan accretionary complexes.
Anahtar Kelime: Collision strike-slip faults slip rate Anatolia earthquake

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Acarel D, Cambaz MD, Turhan F, Mutlu AK, Polat R (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosciences 11 (1): 1098-1111. https://doi.org/10.1515/geo- 2019-0085
  • Akçar N, Ivy-Ochs S, Kubik P, Schlüchter C (2011). Post-depositional impacts on ‘Findlinge’ (erratic boulders) and their implications for surface-exposure dating. Swiss Journal of Geosciences 104 (3): 445-453.
  • Akçar N, Tikhomirov D, Özkaymak Ç, Ivy-Ochs S, Alfimov V et al. (2012). 36Cl exposure dating of paleoearthquakes in the Eastern Mediterranean: First results from the western Anatolian Extensional Province, Manisa fault zone, Turkey. Geological Society of America Bulletin, 124 (11-12): 1724-1735.
  • Akçar N, Yavuz V, Yeşilyurt S, Ivy-Ochs S, Reber R et al. (2017). Synchronous Last Glacial Maximum across the Anatolian peninsula. Geological Society London, Special Publications 433: 251-269. https://doi.org/10.1144/SP433.7
  • Aktuğ B, Dikmen Ü, Doğru A, Özener H (2013a). Seismicity and strain accumulation around Karliova Triple Junction (Turkey). Journal of Geodynamics 67: 21–29. https://doi.org/10.1016/j. jog.2012.04.008
  • Aktuğ B, Parmaksız E, Kurt M, Lenk O, Kılıçoğlu A et al. (2013b). Deformation of Central Anatolia: GPS implications. Journal of Geodynamics 67: 78–96. https://doi.org/10.1016/j. jog.2012.05.008
  • Akyüz HS, Uçarkuş G, Altunel E, Doğan B, Dikbaş A (2012). Paleoseismological investigations on a slow-moving active fault in Central Anatolia, Tecer Fault, Sivas. Annals of Geophysics 55 (5): 847–857. https://doi.org/10.4401/ag-5444
  • Alfimov V, Ivy-Ochs S (2009). How well do we understand production of 36Cl in limestone and dolomite? Quaternary Geochronology 4(6): 462-474.
  • Arpat E, Şaroğlu F (1975). Türkiye’de Bazı Önemli Genç Tektonik Olaylar. Türkiye Jeoloji Bülteni 18: 91–101.
  • Avouac J-P, Tapponnier P (1993). Kinematic model of active deformation in central Asia. Geophysical Research Letters 20: 895–898. https://doi.org/10.1029/93GL00128
  • Baljinnyam I, Bayasgalan A, Borisov BA, Cisternas A, Dem’yanovich MG et al. (1993). Ruptures of Major Earthquakes and Active Deformation in Mongolia and Its Surroundings, Geological Society of America Memoirs 181: 62+iv p. https://doi. org/10.1130/MEM181-p1
  • Barka AA, Reilinger R (1997). Active Tectonics of the Eastern Mediterranean Region: deduced from GPS, neotectonic and seismicity data. Annals of Geophysics 40 (3): 587–610. https:// doi.org/10.4401/ag-3892
  • Bayasgalan A, Jackson J, Ritz J-F, Carretier S (1999). Field examples of strike-slip fault terminations in Mongolia and their tectonic significance. Tectonics 18: 394–411. https://doi. org/10.1029/1999TC900007
  • Bayasgalan A, Jackson J, McKenzie D (2005). Lithosphere rheology and active tectonics in Mongolia: relations between earthquake source parameters, gravity and GPS measurements. Geophysical Journal International 163: 1151–1179. https://doi. org/10.1111/j.1365-246X.2005.02764.x
  • Bayrakdar C, Çılğın Z, Döker MF, Canpolat E (2015). Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences 24: 56–71. https://doi. org/10.3906/yer-1403-7
  • Blair TC, McPherson JG (1994). Alluvial Fan Processes and Forms. In: Abrahams AD, Parsons AJ (editors) Geomorphology of Desert Environments. Springer Netherlands. pp. 354–402. https://doi.org/10.1007/978-94-015-8254-4_14
  • Bohannon RG, Howell DG (1982). Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California. Geology 10: 358–363. https://doi.org/10.1130/0091- 7613(1982)10<358:keotjo>2.0.co;2
  • Bozkurt E (2001). Neotectonics of Turkey; a synthesis. Geodinamica Acta 14: 3–30.
  • Chorowicz J, Luxey P, Rudant JP, Lyberis N, Yürür T et al. (1995). Slip-motion estimation along the Ovacik fault near Erzincan (Turkey) using ERS-1 radar image: Evidence of important deformation inside the Turkish plate. Remote Sensing of Environment 52: 66–70. https://doi.org/10.1016/0034- 4257(95)00014-R
  • Chorowicz J, Dhont D, Gündogdu N (1999). Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology 21: 511–532.
  • Çılğın Z (2020). 3D surface modeling of late Pleistocene glaciers in the Munzur Mountains (Eastern Turkey) and its paleoclimatic implications. Turkish Journal of Earth Sciences 29 (5): 714- 732. https://doi.org/10.3906/yer-1905-18
  • Cowgill E (2007). Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters 254 (3-4): 239–255. https://doi.org/10.1016/j.epsl.2006.09.015
  • Cummings D (1976). Theory of plasticity applied to faulting, Mojave Desert, southern California. Geological Society of America Bulletin 87: 720–724.
  • Desilets D, Zreda M, Almasi PF, Elmore D (2006). Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233 (3– 4): 185-195. https://doi.org/10.1016/j.chemgeo.2006.03.001
  • Dunai TJ (2010). Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804519
  • Dunne J, Elmore D, Muzikar P (1999). Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27 (1–2): 3-11.
  • Ekström G, Nettles M, Dziewoński AM (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200– 201: 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
  • Elmore D, Ma X, Miller T, Mueller K, Perry M et al. (1997). Status and plans for the PRIME Lab AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 123(1): 69-72.
  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş et al. (2013). Açıklamalı Türkiye Diri Fay Haritası Ölçek 1:1250000 (Active Fault Map of Turkey with an Explanatory Text 1:1250000 scale). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • England P, Houseman G, Nocquet J-M (2016). Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean. Journal of Geophysical Research: Solid Earth 121: 8888–8916. https://doi.org/10.1002/2016JB013382
  • Evans JM, Stone JOH, Fifield LK, Cresswell RG (1997). Cosmogenic Chlorine-36 production in K-feldspar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123 (1): 334-340.
  • Fabryka-Martin JT (1988). Production of Radionuclides in the Earth and Their Hydrogeologic Significance with Emphasis on Chlorine-36 and Iodine-129. PhD, Arizona University.
  • Faccenna C. Becker TW, Jolivet L, Keskin M (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters 375: 254–269. https://doi.org/http:// dx.doi.org/10.1016/j.epsl.2013.05.043
  • Göğüş OH, Pysklywec RN, Şengör AMC, Gün E (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature Communications 8: 1538. https://doi. org/10.1038/s41467-017-01611-3
  • Gold RD, Cowgill E, Arrowsmith JR, Gosse J, Chen X et al. (2009). Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth 114: B04401. https://doi.org/10.1029/2008jb005913
  • Gold RD, Cowgill E, Arrowsmith JR, Chen X, Sharp WD et al. (2011). Faulted terrace risers place new constraints on the late Quaternary slip-rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bulletin 123: 958–978. https://doi.org/10.1130/b30207.1
  • Gürsoy H, Piper JDA, Tatar O, Temiz H (1997). A palaeomagnetic study of the Sivas Basin, central Turkey: crustal deformation during lateral extrusion of the Anatolian Block. Tectonophysics 271: 89–105. https://doi.org/10.1016/s0040-1951(96)00242-9
  • Haddon EK, Amos CB, Zielke O, Jayko AS, Bürgmann R (2016). Surface slip during large Owens Valley earthquakes. Geochemistry, Geophysics, Geosystems 17 (6): 2239–2269. https://doi.org/10.1002/2015GC006033
  • Hancock GS, Anderson RS, Chadwick OA, Finkel, RC (1999). Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming. Geomorphology 27 (1–2): 41-60.
  • Higgins M, Schoenbohm LM, Brocard G, Kaymakçı N, Gosse JC et al. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics 34: 2118–2141. https://doi. org/10.1002/2015TC003864
  • Ivy-Ochs S, Dühnforth M, Densmore AL, Alfimov V (2013). Dating fan deposits with cosmogenic nuclides. In: M.S.-B.e. al. (editors), Dating torrential processes on fans and cones. Advances in Global Change Research. Springer, Dordrecht, pp. 243-263.
  • Ivy-Ochs S, Kober F (2008). Surface exposure dating with cosmogenic nuclides. Eiszeitalter und Gegenwart Quaternary Science Journal 57 (1-2): 179-209.
  • Ivy-Ochs S, Schäfer J, Kubik PW, Synal H-A, Schlüchter C (2004). Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae 97 (1): 47-55.
  • Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü (2020). B.U. KOERI-RETMC Earthquake Catalog [WWW Document]. URL http://www.koeri.boun.edu.tr/sismo/2/earthquake- catalog/ (accessed 1.8.20).
  • Kaymakçı N, İnceöz M, Ertepınar P (2006). 3-D Architecture and Neogene Evolution of the Malatya Basin: Inferences for the Kinematics for the Malatya and Ovacık Fault Zone. Turkish Journal of Earth Sciences 15: 123–154.
  • Koçyiğit A, Beyhan A (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284: 317–336. https://doi.org/10.1016/s0040- 1951(97)00176-5
  • Kurushin RA, Bayasgalan A, Ölziybat M, Enhtuvshin B, Molnar P et al. (1997). The Surface Rupture of the 1957 Gobi-Altay, Mongolia, Earthquake, Geological Society of America Special Paper. Boulder, Colorado. https://doi.org/10.1130/SPE320
  • Lal D (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104 (2): 424-439.
  • Le Dortz K, Meyer B, Sébrier M, Braucher R, Bourlès D et al. (2012). Interpreting scattered in-situ produced cosmogenic nuclide depth-profile data. Quaternary Geochronology 11: 98–115. https://doi.org/10.1016/j.quageo.2012.02.020
  • Le Pichon X (1968). Sea-floor spreading and continental drift. Journal of Geophysical Research 73: 3661–3697. https://doi. org/10.1029/JB073i012p03661
  • Le Pichon X, Kreemer C (2010). The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annual Review of Earth and Planeteary Sciences 38: 323–351. https://doi.org/doi:10.1146/ annurev-earth-040809-152419
  • Liu B, Phillips FM, Fabryka-Martin JT, Fowler MM, Stone WD (1994). Cosmogenic 36Cl accumulation in unstable landforms: 1. Effects of the thermal neutron distribution. Water Resources Research, 30(11): 3115-3125.
  • McKenzie DP (1970). Plate Tectonics of the Mediterranean Region. Nature 226: 239–243.
  • McKenzie DP (1972). Active Tectonic of the Mediterranean Region. Geophysical Journal of Royal Astronomical Society 30:109–185. McKenzie DP, Parker RL (1967). The North Pacific: an Example of Tectonics on a Sphere. Nature 216: 1276–1280.
  • Meade BJ, Hager BH (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research 110: B03403. https://doi. org/10.1029/2004jb003209
  • Mériaux AS, Ryerson FJ, Tapponnier P, Van der Woerd J, Finkel RC et al. (2004). Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research Solid Earth 109: B06401 https://doi.org/10.1029/2003JB002558
  • Mériaux AS, Tapponnier P, Ryerson FJ, Xiwei X, King G et al. (2005). The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. Journal Geophysical Research Solid Earth 110: B04404. https:// doi.org/10.1029/2004JB003210
  • Mériaux AS, Van der Woerd J, Tapponnier P, Ryerson FJ, Finkel RC et al. (2012). The Pingding segment of the Altyn Tagh Fault (91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces. Journal of Geophysical Research Solid Earth 117: B09406. https://doi. org/10.1029/2012JB009289
  • Molnar P (1988). Continental tectonics in the aftermath of plate tectonics. Nature 335: 131–137. https://doi. org/10.1038/335131a0
  • Molnar P, Tapponnier P (1975). Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 189: 419-426. https://doi. org/10.1126/science.189.4201.419
  • Morgan WJ (1968). Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research 73: 1959–1982. https://doi. org/10.1029/JB073i006p01959
  • Okal EA (1977). The July 9 and 23, 1905, Mongolian earthquakes: A surface wave investigation. Earth and Planeteary Science Letters 34: 326–331. https://doi.org/10.1016/0012-821X(77)90018-8
  • Özbey V, Şengör AMC, Özeren MS (2022). Tectonics in a very slowly deforming region in an orogenic belt. Tectonophysics 827: 229272. https://doi.org/10.1016/j.tecto.2022.229272
  • Özener H, Arpat E, Ergintav S, Doğru A, Çakmak R et al. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of Geodynamics 49: 141–150. https://doi. org/10.1016/j.jog.2010.01.003
  • Özeren, MS, Holt WE (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophysical Journal International 183: 1165–1184. https://doi.org/10.1111/j.1365- 246X.2010.04819.x
  • Paul A, Karabulut H, Mutlu AK, Salaün G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth and Planetary Science Letters 389: 14–22. https://doi.org /10.1016/j.epsl.2013.12.019
  • Pérouse E, Sébrier M, Braucher R, Chamot-Rooke N, Bourlès D et al. (2017). Transition from collision to subduction in Western Greece: the Katouna–Stamna active fault system and regional kinematics. International Journal of Earth Sciences 106: 967– 989. https://doi.org/10.1007/s00531-016-1345-9
  • Phillips FM, Stone WD, Fabryka-Martin JT (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175 (3–4): 689-701.
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research Solid Earth 111: B05411. https://doi. org/10.1029/2005JB004051
  • Sançar T, Akyüz HS, Schreurs G, Zabcı C (2018). Mechanics of Plio-Quaternary faulting around the Karliova triple junction: implications for the deformation of eastern part of the Anatolian Scholle. Geodinamica Acta 30: 287–305. https://doi. org/10.1080/09853111.2018.1533736
  • Sançar T, Zabcı C, Karabacak V, Yazıcı M, Akyüz HS (2019). Geometry and Paleoseismology of the Malatya Fault (Malatya- Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian ScholleJournal of Seismology 23: 319–340. https://doi.org/10.1007/s10950-018-9808-z
  • Sançar T, Zabcı C, Akçar N, Karabacak V, Yeşilyurt S et al. (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip-rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). Journal of Asian Earth Sciences 188: 104091. https://doi.org/10.1016/j.jseaes.2019.104091
  • Sarıkaya MA, Yıldırım C, Çiner A (2015). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics 64: 33–46. https:// doi.org/10.1016/j.tecto.2015.02.022
  • Schildgen TF, Cosentino D, Caruso A, Buchwaldt R, Yıldırım C et al. (2012). Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey. Tectonics 31: TC2005. https://doi.org/10.1029/2011tc003021
  • Schildgen TF, Yıldırım C, Cosentino D, Strecker MR (2014). Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Reviews 128: 147–168. https://doi.org/10.1016/j.earscirev.2013.11.006
  • Schlupp A, Cisternas A (2007). Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay). Geophysical Journal International 169: 1115–1131. https://doi.org/10.1111/ j.1365-246X.2007.03323.x
  • Şengör AMC (1979). The North Anatolian transform fault; its age, offset and tectonic significance. Journal of Geological Society 136 (3): 269–282. https://doi.org/10.1144/gsjgs.136.3.0269
  • Şengör AMC (1980). Türkiye’nin neotektoniğinin esasları (Principles of the Neotectonism of Turkey). Türkiye Jeoloji Kurumu Konferans Serisi, Ankara.
  • Şengör AMC, Natal’in BA, Burtman VS (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364: 299–307. http://dx.doi.org/10.1038/364299a0
  • Şengör AMC, Natalin BA (1996). Paleotectonics of Asia: Fragments of a Synthesis. In: Yin A, Harrison M (editors), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp. 486–640.
  • Şengör AMC, Görür N, Şaroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (editors), Strike- Slip Deformation, Basin Formation, and Sedimentation, Society of Economic Paleontologists and Mineralogists Special Publication, Oklahoma, vol. 37 pp. 227–264. https://doi. org/10.2110/pec.85.37.0211
  • Şengör AMC, Natal’in BA, Sunal G, van der Voo R (2018). The Tectonics of the Altaids: Crustal Growth During the Construction of the Continental Lithosphere of Central Asia Between ∼750 and ∼130 Ma Ago. Annual Review of Earth and Planetary Sciences 46 (1): 439–494. https://doi.org/10.1146/ annurev-earth-060313-054826
  • Şengör AMC, Zabcı C, Natal’in BA (2019a). Continental Transform Faults: Congruence and Incongruence with Normal Plate Kinematics. In: Duarte JC (editor), Transform Plate Boundaries and Fracture Zones. Elsevier, pp. 169–247. https://doi.org/ https://doi.org/10.1016/B978-0-12-812064-4.00009-8
  • Şengör AMC, Lom N, Sunal G, Zabcı C, Sançar T. (2019b). The phanerozoic palaeotectonics of Turkey. Part I: an inventory. Mediterranean Geoscience Reviews 1: 91–161. https://doi. org/10.1007/s42990-019-00007-3.
  • Şengör AMC, Yazıcı M (2020) The aetiology of the neotectonic evolution of Turkey. Mediterranean Geoscicence Reviews 2:327–339. https://doi.org/10.1007/s42990-020-00039-0
  • Sieh KE, Jahns RH (1984). Holocene activity of the San Andreas fault at Wallace Creek, California. Geological Society of America Bulletin 95: 883–896. https://doi.org/10.1130/0016- 7606(1984)95<883:haotsa>2.0.co;2
  • Stange KM, van Balen R, Carcaillet J, Vandenberghe J (2013). Terrace staircase development in the Southern Pyrenees Foreland: Inferences from 10Be terrace exposure ages at the Segre River. Global and Planetary Change 101: 97–112. https://doi. org/10.1016/j.gloplacha.2012.12.007
  • Stein S, Sella GF (2002). Plate Boundary Zones: Concepts and Approaches. In Stein S, Freymueller (editors) Plate Boundary Zones, Geodynamics Series. https://doi.org/doi:10.1029/ GD030p0001
  • Stone JO (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105 (B10): 23753- 23759. https://doi.org/10.1029/2000JB900181
  • Stone JO, Allan GL, Fifield LK, Cresswell RG (1996). Cosmogenic Chlorine-36 from calcium spallation. Geochimica et Cosmochimica Acta 60 (4): 679-692. https://doi. org/10.1016/0016-7037(95)00429-7
  • Stone JOH, Evans JM, Fifield LK, Allan GL, Cresswell RG (1998). Cosmogenic Chlorine-36 Production in Calcite by Muons. Geochimica et Cosmochimica Acta 62 (3): 433-454. https:// doi.org/10.1016/S0016-7037(97)00369-4
  • Synal HA, Bonani G, Döbeli M, Ender RM, Gartenmann P, Kubik PW, Schnabel C, Suter M (1997). Status report of the PSI/ETH AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123 (1): 62-68. https://doi.org/10.1016/S0168-583X(96)00608-8
  • Tapponnier P, Peltzer G, Armijo R (1986). On the mechanics of the collision between India and Asia. Geological Society London, Special Publications 19: 113–157. https://doi.org/10.1144/GSL. SP.1986.019.01.07
  • Tarhan N (2008). 1:100.000 ölçekli Türkiye Jeoloji Haritaları, No: 88 Erzincan - J42 Paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Tatar O, Poyraz F, Gürsoy H, Çakır Z, Ergintav S et al. (2012) Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics 518–521: 55–62. https://doi.org/10.1016/j. tecto.2011.11.010
  • Tikhomirov D, Akçar N, Ivy-Ochs S, Alfimov V, Schlüchter C (2014). Calculation of shielding factors for production of cosmogenic nuclides in fault scarps. Quaternary Geochronology 19: 181- 193. https://doi.org/10.1016/j.quageo.2013.08.004
  • van der Woerd J, Ryerson FJ, Tapponnier P, Gaudemer Y, Finkel R et al. (1998). Holocene left-slip-rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China). Geology 26: 695–698. https://doi. org/10.1130/0091-7613(1998)026<0695:hlsrdb>2.3.co;2
  • van der Woerd J, Ryerson FJ, Tapponnier P, Mériaux AS, Gaudemer Y et al. (2000). Uniform Slip-Rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics. Geophysical Research Letters 27: 2353–2356. https://doi. org/10.1029/1999GL011292
  • van der Woerd J, Tapponnier P, Ryerson FJ, Mériaux AS, Meyer B (2002). Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from Al-26, Be-10, and C-14 dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International 148: 356–388. https://doi. org/10.1046/j.1365-246x.2002.01556.x
  • Varnes DJ (1962). Analysis of plastic deformation according to Von Mises’ theory, with application to the South Silverton area, San Juan County, Colorado, USGS Professional Paper, v.378-B. Colorado.
  • Viveen W, Braucher R, Bourlès D, Schoorl JM, Veldkamp A et al. (2012). A 0.65Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Global and Planeteary Change 94–95: 82–100. https://doi.org/10.1016/j.gloplacha.2012.07.001
  • Weiqi Z, Decheng J, Peizhen Z, Molnar P, Burchfield BC et al. (1987). Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake. Bulletin of the Seismological Society of America 77 (1): 117–131. https://doi.org/10.1785/ BSSA0770010117
  • Wallace RE (1990). General Features. In: Wallace RE (editor), The San Andreas Fault System, California. U.S. Geological Survey, Denver, pp. 8–12.
  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union 94: 409–410. https://doi. org/10.1002/2013EO450001
  • Westaway R, Arger J (2001). Kinematics of the Malatya–Ovacık Fault Zone. Geodinamica Acta 14: 103–131. https://doi.org/10.1016/ S0985-3111(00)01058-5
  • Westaway R, Demir T, Seyrek A (2008). Geometry of the Turkey- Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: the role of the Malatya-Ovacık Fault Zone in eastern Turkey. Earth 3: 27–35. https://doi. org/10.5194/ee-3-27-2008
  • Wilson JT (1965). A New Class of Faults and their Bearing on Continental Drift. Nature 207: 343–347.
  • Yazıcı M, Zabcı C, Sançar T, Natal’in BA (2018). The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology 321: 129–145. https://doi.org/10.1016/J. GEOMORPH.2018.08.022
  • Yeşilyurt S, Akçar N, Doğan U, Yavuz V, Ivy-Ochs S et al. (2015). Extensive ice fields in eastern Turkey during the Last Glacial Maximum, in: INQUA XIX. Nagoya, Japan, p. T00993.
  • Yıldırım C (2014). Relative tectonic activity assessment of the Tuz Gölü Fault Zone; Central Anatolia, Turkey. Tectonophysics 630: 183–192. https://doi.org/10.1016/j.tecto.2014.05.023
  • Yıldırım C, Sarıkaya MA, Çiner A (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics 35: 1446–1464. https://doi.org/10.1002/2015TC004038
  • Zechar JD, Frankel KL (2009). Incorporating and reporting uncertainties in fault slip rates. Journal of Geophysical Research Solid Earth 114: B12407. https://doi.org/10.1029/2009JB006325
  • Zielke O, Arrowsmith JR (2012). LaDiCaoz and LiDARimager— MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere 8 (1): 206–221.
APA Zabcı C, SANÇAR T, Tikhomirov D, Ivy-Ochs S, Vockenhuber C, Friedrich A, Yazıcı M, Akçar N (2023). Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). , 351 - 379. 10.55730/1300-0985.1849
Chicago Zabcı Cengiz,SANÇAR Taylan,Tikhomirov Dmitry,Ivy-Ochs Susan,Vockenhuber Christof,Friedrich Anke M.,Yazıcı Müge,Akçar Naki Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). (2023): 351 - 379. 10.55730/1300-0985.1849
MLA Zabcı Cengiz,SANÇAR Taylan,Tikhomirov Dmitry,Ivy-Ochs Susan,Vockenhuber Christof,Friedrich Anke M.,Yazıcı Müge,Akçar Naki Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). , 2023, ss.351 - 379. 10.55730/1300-0985.1849
AMA Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). . 2023; 351 - 379. 10.55730/1300-0985.1849
Vancouver Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). . 2023; 351 - 379. 10.55730/1300-0985.1849
IEEE Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N "Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye)." , ss.351 - 379, 2023. 10.55730/1300-0985.1849
ISNAD Zabcı, Cengiz vd. "Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye)". (2023), 351-379. https://doi.org/10.55730/1300-0985.1849
APA Zabcı C, SANÇAR T, Tikhomirov D, Ivy-Ochs S, Vockenhuber C, Friedrich A, Yazıcı M, Akçar N (2023). Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences, 32(SI-3), 351 - 379. 10.55730/1300-0985.1849
Chicago Zabcı Cengiz,SANÇAR Taylan,Tikhomirov Dmitry,Ivy-Ochs Susan,Vockenhuber Christof,Friedrich Anke M.,Yazıcı Müge,Akçar Naki Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences 32, no.SI-3 (2023): 351 - 379. 10.55730/1300-0985.1849
MLA Zabcı Cengiz,SANÇAR Taylan,Tikhomirov Dmitry,Ivy-Ochs Susan,Vockenhuber Christof,Friedrich Anke M.,Yazıcı Müge,Akçar Naki Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences, vol.32, no.SI-3, 2023, ss.351 - 379. 10.55730/1300-0985.1849
AMA Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences. 2023; 32(SI-3): 351 - 379. 10.55730/1300-0985.1849
Vancouver Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences. 2023; 32(SI-3): 351 - 379. 10.55730/1300-0985.1849
IEEE Zabcı C,SANÇAR T,Tikhomirov D,Ivy-Ochs S,Vockenhuber C,Friedrich A,Yazıcı M,Akçar N "Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye)." Turkish Journal of Earth Sciences, 32, ss.351 - 379, 2023. 10.55730/1300-0985.1849
ISNAD Zabcı, Cengiz vd. "Internal deformation of continental blocks within converging plates: insights from the Ovacık Fault (Anatolia, Türkiye)". Turkish Journal of Earth Sciences 32/SI-3 (2023), 351-379. https://doi.org/10.55730/1300-0985.1849