Yıl: 2023 Cilt: 32 Sayı: 2 Sayfa Aralığı: 200 - 213 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1838 İndeks Tarihi: 12-06-2023

Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery

Öz:
The east-west extended Sivas Basin in central-eastern Anatolia is a foreland basin that formed after the obduction of the Tethyan ophiolite during the late Cretaceous and is also a north-verging fold-and-thrust belt. The basement rocks of the basin represent mainly sedimentary (Mesozoic platform-type carbonates) and late Cretaceous Divriği ophiolitic complex. As the ophiolitic rocks are affected by intense tectonic processes, field-based mapping studies require long processes and costs. The study tests to reveal the lithological features of the ophiolitic complex outcropping around the Ulaş district of the Sivas Province using remote sensing methods and techniques. Due to arid climatic conditions and rare vegetation cover in the region, almost all outcrops of the basin rocks can be separated by spectral enhancement methods easily. Band ratio (BR), spectral indices (SI), decorrelation stretch (DS), principal component analysis (PCA), and support vector machine (SVM) on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used in this research. BR, PCA, DC, and SI techniques clearly distinguish the Divriği Ophiolitic Complex from the basement and cover sedimentary rocks. SVM distinguishes the chromite-bearing dunites from the other ophiolite-related rock units. According to image analysis performances, it has been observed that the rocks of the Divriği ophiolitic complex can be differentiated in more detail compared to a 1/100.000 scaled geological map of the region.
Anahtar Kelime: Lithological mapping image processing ASTER multispectral Central Anatolia

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdeen MM, Allison MG, Abdelsalam MG, Stern RJ (2001). Appications of ASTER band-ratio images for geological mapping in arid regions; the Neoproterozoic Allaqi Suture, Egypt. Abstract with program Geological Society of America 3: 289
  • Abrams M (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal Remote Sensing 21: 847-859. https://doi. org/10.1080/014311600210326
  • Abrams M, Hook SJ (1995). Simulated Aster Data for Geologic Studies. IEEE Transactions Geoscience Remote Sensing 33: 692–699. https://doi.org/10.1109/36.387584
  • Abrams MJ, Brown D, Lepley L, Sadowski R (1983). Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology 78: 591–604. https://doi.org/10.2113/ gsecongeo.78.4.591
  • Abrams MJ, Rothery DA, Pontual A (1988). Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images. Tectonophysics 151: 387-401. https://doi.org/10.1016/0040- 1951(88)90254-5
  • Abrams MJ, Yamaguchi Y (2019). Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing 11: 1394. https://doi.org/DOI:10.3390/rs11111394
  • Ahmadi H, Kalkan K (2021). Mapping of ophiolitic complex in logar and surrounding areas (SE Afghanistan) with ASTER data. Journal of the Indian Society of Remote Sensing 49 (6): 1271- 1284. https://doi.org/10.1007/s12524-021-01319-4
  • Aktimur T, Atalay Z, Ateş Ş, Tekirli ME, Yurdakul ME (1988). Munzur Dağları ile Çavuşdağı arasının jeolojisi. MTA Genel Müdürlüğü Raporu, No: 8320, Ankara
  • Aktimur T, Tekirli ME, Yurdakul ME (1990). Sivas-Erzincan Tersiyer havzasının jeolojisi. MTA Dergisi 111: 25-36
  • Amer R, Kusky T, Ghulam A (2010). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Jounal of African Earth Science 56: 75-82. https://doi.org/10.1016/j. jafrearsci.2009.06.004
  • Archard F, D’Souza G (1994). Collection and Pre-Processing of NOAA- AVHRR 1km Resolution Data for Tropical Forest Resource Assessment. TREES Series A: Technical Report Document No: 2. European Commission, Luxembourg
  • Atabey E, Aktimur HT (1997). 1: 100 000 ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları serisi, Sivas-G24 paftası, No:48. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara
  • Bennett SA, Atkinson WW, Kruse FA (1993). Use of thematic mapper imagery to identify mineralization in the Santa Teresa District, Sonora, Mexico. International Geology Review 35: 1009-1029. https://doi.org/10.1080/00206819309465572
  • Beyarslan M, Bingöl AF (2000). Petrology of a suprasubduction zone ophiolite (Elazığ, Turkey). Canadian Journal of Earth Sciences 37: 1411–24. https://doi.org/10.1139/cjes-37-10-1411
  • Carranza EJM (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Economic Geology 104 (6): 890- 890. https://doi.org/10.2113/gsecongeo.104.6.890
  • Chapelle O, Haffner P, Vapnik VN (1999). Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10 (5): 1055-1064. https://doi. org/10.1109/72.788646
  • Cŕosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal Remote Sensing 24 (21): 4233- 4240. https://doi.org/10.1080/0143116031000152291
  • Çelik ÖF, Delaloye M (2003). Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal 38: 235–256. https:// doi.org/10.1002/gj.954
  • ÇelikÖF,ChiaradiaM,MarzoliA,ÖzkanM,BillorZetal.(2013).Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey). Tectonophysics 672: 34-49. https://doi.org/10.1016/j.tecto.2016.01.043
  • Çörtük RM, Çelik ÖF, Alkan A, Özkan M, Özyavaş A (2020). Distribution of rocks in Pınarbaşı Ophiolite from central Anatolia (Turkey) based on analysis of ASTER and Landsat-8 data. Geological Journal 55 (10): 6810-6822. https://doi. org/10.1002/gj.3844
  • Dilek Y, Furnes H (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of American Bulletin 123 (3-4): 387-411. https://doi.org/10.1130/B30446.1
  • Emam A, Zoheir B, Johnson P (2016). ASTER-based mapping of ophiolitic rocks: examples from the Allaqi Heiani suture, SE Egypt. International Geology Review 58 (5): 525-539. https://doi. org/10.1080/00206814.2015.1094382
  • Eslami A, Ghaderi M, Rajendran A, Pour AB, Hashim M (2015). Integration of ASTER and Landsat TM satellite sensing data for chromite prospecting and lithological mapping in Neyriz ophiolite zone, south Iran. Resource Geology 65: 375-388. https://doi.org/10.1111/rge.12088
  • Eva H, Lambin EF (1998). Burnt area mapping in central africa using ATSR data. International Journal of Remote Sensing 19: 3473-3497. https://doi.org/10.1080/014311698213768
  • Floyd PA, Göncüoğlu MC, Winchester JA, Yalınız MK (2000). Geochemical character and tectonic environment of Neotethyan ophiolitic fragments and metabasites in the Central Anatolian Crystalline Complex, Turkey. In: Bozkurt, E., Winchester, J.A. & piper, J.D.A (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications 173: 183–202. https:// doi.org/10.1111/rge.12088
  • Gabr S, Ghulam A, Kusky T (2010). Detecting areas of high potential gold mineralization using ASTER data. Ore Geology Reviews 38: 59-69. https://doi.org/10.1016/j.oregeorev.2010.05.007
  • Gad S, Kusky T (2007). ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research 11: 326– 335. https://doi.org/10.1016/j.gr.2006.02.010
  • Gillespie AR, Kahle AB, Walker RE (1986). Color enhancement of highly correlated images. I Decorrelation and HSI contrast stretches. Remote Sensing Environmental 20: 209–235. https://doi.org/10.1016/0034-4257(86)90044-1
  • Gürsoy Ö (2019). Hybrid Band Combination for Discriminating Lithology of Dunite in Ultramafic Rocks. Journal of Indian Society Remote Sensing 47 (6): 1041-1049. https://doi. org/10.1007/s12524-019-00957-z
  • Hewson RD, Cudahy TJ, Huntington JF (2001). Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data, in: International Geoscience Remote Sensing Symposium 2: 724–726. https://doi. org/10.1109/IGARSS.2001.976615
  • Hewson RD, Cudahy TJ, Mizuhiko S, Ueda K, Mauger AJ (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing Environmental 99: 159–172. https://doi. org/10.1016/j.rse.2005.04.025
  • Inan S, Inan N (1988). Fasiyes özelliklerine göre Tecer kireçtaşı formasyonunu (Sivas) yapısı hakkında bir yorum. 42. Türkiye Jeoloji Kurultayı bildiri özleri, s45, Ankara
  • Inzana J, Kusky T, Higgs G, Tucker R (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences 37 (1-2): 59-72. https://doi.org/10.1016/ S0899-5362(03)00071-X
  • Iwasakı A, Tonoka H (2005). Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. Transactions Geoscience Remote Sensing 43: 2747–2751. https://doi.org/10.1109/ TGRS.2005. 855066
  • Jensen JR (1996). Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd Edition, Prentice Hall, Inc., Upper Saddle River, NJ
  • Kavak KŞ, Parlak O, Temiz H (2017). Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the inner Tauride Ocean, Central-Eastern Turkey. Geodinamica Acta 29 (1): 160-180. https://doi.org/10.1080/09853111.2017.1359773
  • Kavak KŞ, Töre Y, Temiz H, Parlak O, Çığla H et al. (2010). Differentiation of Neotethyan ophiolitic melange and an approach revealing its surficial chromite deposits using ASTER image and spectral measurements (Sivas, Turkey). Proc. SPIE 7831, Earth Resources and Environmental Remote Sensing/GIS Applications 7831: 78310D-3. https://doi. org/10.1117/12.864549
  • Kergaravat C (2016). Dynamique de formation et de déformation de minibassins en contexte compressif: exemple du bassin de Sivas, Turquie-Approche terrain et implications structurales multiéchelles, PhD, University of Pau, France (in French)
  • Khan SD, Mahmood K (2008). The application of remote sensing techniques to the study of ophiolites. Earth Science Reviews 89 (3-4): 135-143. https://doi.org/10.1016/j.earscirev.2008.04.004
  • Köküm M (2019). Landsat TM görüntüleri üzerinden Doğu Anadolu fay sistemi’nin Palu (Elazığ)-Pütürge (Malatya) arasındaki bölümünün çizgisellik analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi: 9 (1): 119-127. https://doi.org/10.17714/ gumusfenbil.419865
  • Kurtman F (1973). Sivas-Hafik-Zara ve İmranlı bölgesinin jeolojik ve tektonik yapısı. MTA Dergisi 80: 1-32
  • Legeay E (2017). Géodynamique du Bassin de Sivas (Turquie) - De la fermeture d’un domaine océanique à la mise en place d’un avant-pays salifère, PhD. University of Pau, France (in French)
  • Mohamed El-Desoky H, Soliman N, Ahmed Heikal M, Moustafa Abdel-Rahman A (2021). Mapping hydrothermal alteration zones using ASTER images in the Arabian–Nubian Shield: A case study of the northwestern Allaqi District, South Eastern Desert, Egypt. Jounal of Asian Earth Sciences 5: 100060. https://doi.org/10.1016/j.jaesx.2021.100060
  • Moores EM (1982). Origin and emplacement of ophiolites. Reviews of Geophysics 20 (4): 735-760. https://doi.org/10.1029/ RG020i004p00735
  • Mosier DL, Singer DA, Moring BC, Galloway JP (2012). Podiform chromite Deposits-Database and grade and tonnage models. US Geology Survey Science. İnvestment Report, 2012 5157: 45
  • Ninomiya Y (2003). A Stabilized Vegetation Index and Several Mineralogic Indices Defined for ASTER VNIR and SWIR Data, in: International Geoscience and Remote Sensing Symposium (IGARSS). Proceedinds (IEEE Cat. No: 03CH37477. https:// doi.org/10.1109/igarss.2003.1294172
  • Ninomiya Y, Fu B, Cudahy TJ (2005). Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared ‘radiance- at-sensor’ data. Remote Sensing Environmental 101 (4): 127- 139. https://doi.org/10.1016/j.rse.2005.06.009
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey. Geology Society of London, Special Publications 156 (1): 475– 515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Özgül N, Turşucu A, Özyardımcı N, Şenol M, Bingöl İ et al. (1981). Munzur Dağlarının Jeolojisi, MTA Derleme Raporu No: 6995 Ankara
  • Özgül N, Metin S, Göğer E, Bingöl İ, Baydar O et al. (1973). Tufanbeyli dolayının Kambriyen ve Tersiyer kayaları, Türkiye Jeoloji Kurultayı Bülteni 16/1: 82-100
  • Özkan M, Çelik ÖF, Özyavaş A (2018). Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data. Journal of African Earth Sciences 138: 75-85. https://doi.org/10.1016/j. jafrearsci.2017.11.009
  • Özkan M, Çelik ÖF, Soycan H, Çörtük RM, Marzoli A (2020). The Middle Jurassic and Early Cretaceous basalt-radiolarian chert association from the Tekelidağ Mélange, eastern İzmir-Ankara- Erzincan suture zone (northern Turkey). Cretaceous Research 107:104280. https://doi.org/10.1016/j.cretres.2019.104280
  • Parlak O (1996). Geochemistry and Geochronology of the Mersin Ophiolite within the Eastern Mediterranean Tectonic Frame. PhD Thesis, Terre & Environnement 6, University of Geneva, Switzerland
  • Parlak O, Delaloye M, Bingöl E (1996). Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau 85: 647–661. https://doi.org/10.1007/BF02440102
  • Parlak O, Höck V, Delaloye M (2000). Suprasubduction zone origin of the Pozantı-Karsantı ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London Special Publications 173: 219- 234. https://doi.org/10.1144/GSL.SP.2000.173.01.11
  • Parlak O, Höck V, Delaloye M (2002). The supra-subduction zone Pozantı-Karsanti ophiolite, southern Turkey: evidence for high- pressure crystal fractionation of ultramafic. Lithos 65: 205-224. https://doi.org/10.1016/S0024-4937(02)00166-4
  • Parlak O, Höck V, Kozlu H, Delaloye M (2004). Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geological Magazine 141: 583–603. https://doi.org/10.1017/S0016756804009458
  • Parlak O, Yılmaz H, Boztuğ D (2006). Origin and tectonic significance of the metamorphic sole and isolated dykes of the Divriği ophiolite (Sivas, Turkey): Evidence for a break-off prior to ophiolite emplacement. Turkish Journal of Earth Sciences 15: 25-45
  • Parlak O, Karaoğlan F, Rızaoğlu T, Klötzli U, Koller F et al. (2013). U-Pb and 40Ar-39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. Journal of Geodynamics 65: 23-37. https://doi.org/10.1016/j.jog.2012.06.012
  • Pearce JA, Lippard SJ, Roberts S (1984). Characteristics and tectonic significance of supra subduction zone ophiolites. In: KOKELAAR, B.P. & HOWELLS, M.F. (eds), Marginal Basin Geology. Geological Society of London Special Publications 16: 77–94. https://doi.org/10.1144/GSL.SP.1984.016.01.06
  • Pearce JA, Geochemical fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 100: 14-48. https://doi. org/10.1016/j.lithos.2007.06.016
  • Poisson A, Guezou JC, Özturk A, Inan S, Temiz H et al. (1996). Tectonic setting and evolution of the Sivas Basin, central Anatolia, Turkey. International Geology Review 38(9): 838- 853. https://doi.org/10.1080/00206819709465366
  • Pour AB, Hashim M (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences 42 (6): 1309-1323. https://doi.org/10.1016/j.jseaes.2011.07.017
  • Pournamdari M, Hashim M, Pour AB (2014). Application of ASTER and Landsat TM data for geological mapping of esfandagheh ophiolite complex, southern Iran. Resourch Geology 64 (3): 233-246. https://doi.org/10.1111/rge.12038
  • Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-Abri AH et al. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews 44: 121-135. https://doi.org/10.1016/j.oregeorev.2011.09.010
  • Rajendran S, Nasir S (2015). Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics 657: 63-80. https:// doi.org/10.1016/j.tecto.2015.06.023
  • Rajendran S, Nasir S (2019). Mapping of hydrothermal alteration in the Late mantle-Early crust transition zone of the Tayin Massif, Sultanate of Oman using remote sensing technique. Journal of African Earth Sciences 150: 722-743. https://doi.org/10.1016/j. jafrearsci.2018.10.001
  • Robertson AHF (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos 65: 1-67. https://doi.org/10.1016/S0024- 4937(02)00160-3
  • Robertson AHF (2004). Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the eastern Mediterranean and Oman regions. Earth Science Reviews 66: 331-387. https://doi.org/10.1016/j.earscirev.2004.01.005
  • Rothery DA (1987). Improved discrimination of rock units using Landsat Thematic Mapper imagery of the Oman ophiolite. Journal of Geology Society 144 (4): 587-597. https://doi. org/10.1144/gsjgs.144.4.0587
  • Rowan LC, Mars JC (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing Environmental 84: 350-366. https://doi.org/10.1016/ S0034-4257(02)00127-X
  • Sabins FF (1987). Remote Sensing: Principles and Interpretation . By F.F.Sabins. New York: W. H. Freeman, second edition, 1986, P: 449
  • Sain SR, Vapnik VN (1996). The Nature of Statistical Learning Theory. Technometrics 38(4): 409. https://doi.org/10.2307/1271324
  • Tangestani MH, Moore F (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, meiduk area, (Kerman, Iran). Canadian Journal of Remote Sensing 27 (2): 176-182. https://doi.org/10.1 080/07038992.2001.10854931
  • Thakur S, Maity D, Mondal I, Basumatary G, Ghosh PB et al. (2021). Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ Dev Sustain 23: 1917–1943 (2021). https://doi.org/10.1007/s10668-020-00656-7
  • Töre Y (2010). Sivas havzası güneydoğu kenarında yüzeylenen ofiyolitik karışığa ait birimlerin uzaktan algılama yöntemleriyle belirlenmesi. Ms, Sivas Cumhuriyet University, Sivas, Turkey (in Turkish)
  • Traore M, Çan T, Tekin S (2022). Mapping carbonate-hosted Pb-Zn mineralization zones in Yahyalı Province (Eastern Taurus- Turkey) using ASTER data. Advances in Space Research 69 (1): 266-281. https://doi.org/10.1016/j.asr.2021.07.034
  • Topuz G, Çelik OF, Şengör AMC, Altıntaş IE, Zack T et al. (2013). Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahiye ophiolite, and relation to the Balkan ophiolites. American Journal of Science 313: 1054-1087. https://doi. org/10.2475/10.2013.04
  • Url-1. (https://lpdaac.usgs.gov/data/get-started-data/collection- overview/missions/aster-overview/)
  • Uysal İ, Ersoy EY, Dilek Y, Escayola M, Sarıfakıoğlu E et al. (2015). Depletion and fertilization of the Tethyan oceanic Late mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia-Turkey. Gondwana Research 27: 594-611. https://doi. org/10.1016/j.gr.2013.09.008
  • Velosky JC, Stern RJ, Johnson PR (2003). Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Reserch 123 (2–4): 235-247. https://doi.org/10.1016/S0301- 9268(03)00070-6
  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geoscience Remote Sensing 36: 1062-1071. https://doi.org/10.1109/36.700991
  • Yalınız KM, Floyd P, Göncüoğlu MC (1996). Suprasubduction zone ophiolites of Central Anatolia: geochemical evidence from the Sar›karaman ophiolite, Aksaray, Turkey. Mineralogical Magazine 60: 697-710. https://doi.org/10.1180/ minmag.1996.060.402.01
  • Yalınız KM, Floyd P, Göncüoğlu MC (2000). Geochemistry of volcanic rocks from the Çiçekda¤ ophiolite, central Anatolia, Turkey, and their inferred tectonic setting within the northern branch of the Neotethyan ocean. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A (eds), Tectonics and Magmatism in Turkey and the Surrounding area. Geological Society of London Special Publications 173: 203-218. https://doi.org/10.1144/ GSL.SP.2000.173.01.10
  • Yılmaz A (1989). Tectonic zones of the Caucasus and their continuations in northeastern Turkey: a correlation. Bulletin of Mineral Research and Exploration (MTA) 109: 89-106
  • Zabcı C (2021). Çok bantlı Landsat 8-OLI ve Sentinel-2A MSI uydu görüntülerinin karşılaştırmalı jeoloji uygulaması: Örnek çalışma alanı olarak Doğu Anadolu Fayı boyunca Palu-Hazar Gölü bölgesi (Elazığ, Türkiye). Geomatik 6 (3): 238-246. https://doi.org/10.29128/geomatik.776280
  • Zhang R, Zeng M (2018). Mapping lithologic components of ophiolitic Mélanges based on ASTER spectral analysis: A case study from the Bangong-Nujiang Suture Zone (Tibet, China). ISPRS International Journal of Geo-Information 7 (1): 34. https://doi.org/10.3390/ijgi7010034
  • Zhu G, Blumberg DG (2002). Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing Environment 80: 233-240. https://doi.org/10.1016/ S0034- 4257(01)00305-4
  • Xiong Y, Khan SD, Mahmood K, Sisson VB (2011). Lithological mapping of Bela ophiolite with remote-sensing data. International journal of remote sensing 32 (16): 4641-4658. https://doi.org/10.1080/01431161.2010.489069
APA Ekici T (2023). Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. , 200 - 213. 10.55730/1300-0985.1838
Chicago Ekici Taner Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. (2023): 200 - 213. 10.55730/1300-0985.1838
MLA Ekici Taner Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. , 2023, ss.200 - 213. 10.55730/1300-0985.1838
AMA Ekici T Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. . 2023; 200 - 213. 10.55730/1300-0985.1838
Vancouver Ekici T Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. . 2023; 200 - 213. 10.55730/1300-0985.1838
IEEE Ekici T "Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery." , ss.200 - 213, 2023. 10.55730/1300-0985.1838
ISNAD Ekici, Taner. "Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery". (2023), 200-213. https://doi.org/10.55730/1300-0985.1838
APA Ekici T (2023). Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences, 32(2), 200 - 213. 10.55730/1300-0985.1838
Chicago Ekici Taner Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences 32, no.2 (2023): 200 - 213. 10.55730/1300-0985.1838
MLA Ekici Taner Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences, vol.32, no.2, 2023, ss.200 - 213. 10.55730/1300-0985.1838
AMA Ekici T Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences. 2023; 32(2): 200 - 213. 10.55730/1300-0985.1838
Vancouver Ekici T Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences. 2023; 32(2): 200 - 213. 10.55730/1300-0985.1838
IEEE Ekici T "Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery." Turkish Journal of Earth Sciences, 32, ss.200 - 213, 2023. 10.55730/1300-0985.1838
ISNAD Ekici, Taner. "Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery". Turkish Journal of Earth Sciences 32/2 (2023), 200-213. https://doi.org/10.55730/1300-0985.1838