Yıl: 2023 Cilt: 47 Sayı: 2 Sayfa Aralığı: 386 - 398 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3545 İndeks Tarihi: 12-06-2023

Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes

Öz:
An easy method is proposed to prepare poly(vinyl pyrrolidone) (PVP) and poly(N-isopropylacrylamide) (PNiPAAm) nanogels with sizes less than 100 nm. The underlying principle is to prepare dilute polymer solutions in acetone/water mixtures where acetone acts to break tridimensional structure of water hence disrupting the H-bonds bridging polymer coils causing separation and shrinkage in their sizes. Irradiation of these solutions by gamma-rays directly leads to the formation of intramolecular crosslinks within the coils resulting with nanogels with sizes smaller than precursor coils. While the average size of nanogels of PVP irradiated in water only is 236 nm, they were reduced to about 44 nm when irradiation was carried out in acetone/water solutions at near theta compositions. PNiPAAm nanogels were also synthesized by irradiating their dilute acetone/water solutions. Multimodal coil size distribution of PNiPAAm was converted into monomodal distribution with 70 nm average size and low dispersity by the addition of acetone. Irradiation of such solutions yielded PNiPAAm nanogels with 50 nm average size. Stability of nanogels was followed for 1 year not showing any changes in their sizes or size distributions. Nanogels were characterized by dynamic light scattering, scanning electron microscopy, and atomic force microscopy techniques.
Anahtar Kelime: Poly(vinyl pyrrolidone) poly(N-isopropylacrylamide) nanogel gamma irradiation size control effect of acetone

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Peng H-s, Stolwijk JA, Sun L-N, Wegener J, Wolfbeis OS. A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values. Angewandte Chemie International Edition 2010; 49 (25): 4246-4249. https://doi.org/10.1002/anie.200906926
  • 2. Wu W, Zhou S. Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Reviews 2010; 1 (10): 5730. https://doi. org/10.3402/nano.v1i0.5730
  • 3. Gonçalves C, Pereira P, Gama M. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications. Materials 2010; 3 (2): 1420- 1460. https://doi.org/10.3390/ma3021420
  • 4. Ryu J-H, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S. Self-Cross-Linked Polymer Nanogels: A Versatile Nanoscopic Drug Delivery Platform. Journal of the American Chemical Society 2010; 132 (48): 17227-17235. https://doi.org/10.1021/ja1069932
  • 5. Guang Choo ES, Tang X, Sheng Y, Shuter B, Xue J. Controlled loading of superparamagnetic nanoparticles in fluorescent nanogels as effective T2-weighted MRI contrast agents. Journal of Materials Chemistry 2011; 21 (7): 2310-2319. https://doi.org/10.1039/C0JM03232H
  • 6. Yang Z, Ding J. A Thermosensitive and Biodegradable Physical Gel with Chemically Crosslinked Nanogels as the Building Block. Macromolecular Rapid Communications 2008; 29 (9): 751-756. https://doi.org/10.1002/marc.200700872
  • 7. Hayashi C, Hasegawa U, Saita Y, Hemmi H, Hayata T et al. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. Journal of Cellular Physiology 2009; 220 (1): 1-7. https://doi.org/10.1002/jcp.21760
  • 8. Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug discovery today 2011; 16 (9): 457-463. https://doi.org/10.1016/j.drudis.2011.03.004
  • 9. Staudinger H, Husemann E: Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1935; 68 (8): 1618-1634 (in German). https://doi.org/10.1002/cber.19350680841
  • 10. Debache K, Kropf C, Schütz CA, Harwood LJ, Käuper P et al.Vaccination of mice with chitosan nanogel-associated recombinant NcPDI against challenge infection with Neospora caninum tachyzoites. Parasite Immunology 2011; 33 (2): 81-94. https://doi.org/10.1111/j.1365- 3024.2010.01255.x
  • 11. Maciel D, Figueira P, Xiao S, Hu D, Shi X et al. Redox-Responsive Alginate Nanogels with Enhanced Anticancer Cytotoxicity. Biomacromolecules 2013; 14 (9): 3140-3146. https://doi.org/10.1021/bm400768m
  • 12. Akl MA, Sarhan AA, Shoueir KR, Atta AM. Application of Crosslinked Ionic Poly (Vinyl Alcohol) Nanogel as Adsorbents for Water Treatment. Journal of Dispersion Science and Technology 2013; 34 (10): 1399-1408. https://doi.org/10.1080/01932691.2012.742791
  • 13. Chen Y, Zheng X, Qian H, Mao Z, Ding D et al. Hollow Core−Porous Shell Structure Poly(acrylic acid) Nanogels with a Superhigh Capacity of Drug Loading. ACS Applied Materials & Interfaces 2010; 2 (12): 3532-3538. https://doi.org/10.1021/am100709d
  • 14. Ulanski P, Rosiak JM. The use of radiation technique in the synthesis of polymeric nanogels. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1999; 151 (1–4): 356-360. http://dx.doi.org/10.1016/S0168- 583X(99)00085-3
  • 15. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Advanced drug delivery reviews 2002; 54 (1): 135-147. https://doi.org/10.1016/S0169-409X(01)00245-9
  • 16. Zhao X-q, Wang T-x, Liu W, Wang C-d, Wang D et al. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. Journal of Materials Chemistry 2011; 21 (20): 7240-7247. https://doi.org/10.1039/C1JM10277J
  • 17. Schwarz W. PVP: a critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone): CRC Press; 1990.
  • 18. Lopes CM, Felisberti MI. Mechanical behaviour and biocompatibility of poly (1-vinyl-2-pyrrolidinone)–gelatin IPN hydrogels. Biomaterials 2003; 24 (7): 1279-1284. https://doi.org/10.1016/S0142-9612(02)00448-9
  • 19. Abd El-Rehim HA, Swilem AE, Klingner A, Hegazy E-SA, Hamed AA. Developing the Potential Ophthalmic Applications of Pilocarpine Entrapped Into Polyvinylpyrrolidone–Poly(acrylic acid) Nanogel Dispersions Prepared By γ Radiation. Biomacromolecules 2013; 14 (3): 688-698. https://doi.org/10.1021/bm301742m
  • 20. Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB et al. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. Journal of Drug Targeting 2005; 13 (3): 161-171. https://doi.org/ doi:10.1080/10611860500046732
  • 21. Dispenza C, Adamo G, Sabatino MA, Grimaldi N, Bulone D et al. Oligonucleotides-decorated-poly(N-vinyl pyrrolidone) nanogels for gene delivery. Journal of Applied Polymer Science 2014; 131 (2): 39774. https://doi.org/10.1002/app.39774
  • 22. Lim JI, Im H, Lee W-K. Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. Journal of Biomaterials Science, Polymer Edition 2015; 26 (1): 32-41. https://doi.org/10.1080/09205063.2014.979386
  • 23. Tauer K, Gau D, Schulze S, Völkel A, Dimova R. Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers. Colloid and Polymer Science 2009; 287 (3): 299-312. https://doi.org/10.1007/s00396-008-1984-x
  • 24. Cho EC, Kim J-W, Fernández-Nieves A, Weitz DA. Highly Responsive Hydrogel Scaffolds Formed by Three-Dimensional Organization of Microgel Nanoparticles. Nano Letters 2008; 8 (1): 168-172. https://doi.org/10.1021/nl072346e
  • 25. Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009; 5 (4): 707-715. https://doi. org/10.1039/B811923F
  • 26. Annaka M, Matsuura T, Kasai M, Nakahira T, Hara Y et al. Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media. Biomacromolecules 2003; 4 (2): 395-403. https://doi.org/10.1021/bm025697q
  • 27. Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition 2009; 48 (30): 5418-5429. https://doi.org/10.1002/anie.200900441
  • 28. Labhasetwar V, Leslie-Pelecky DL. Biomedical applications of nanotechnology: John Wiley & Sons; 2007.
  • 29. Buxton GV: An overview of the radiation chemistry of liquids. Radiation Chemistry: From Basics to Applications in Material and Life Sciences 2008.
  • 30. Janata E, Schuler RH. Rate constant for scavenging eaq- in nitrous oxide-saturated solutions. The Journal of Physical Chemistry 1982; 86 (11): 2078-2084. https://doi.org/10.1021/j100208a035
  • 31. Hart EJ, Gordon S, Thomas J. Rate Constants of Hydrated Electron Reactions with Organic Compounds1. The Journal of Physical Chemistry 1964; 68 (6): 1271-1274. https://doi.org/10.1021/j100788a001
  • 32. Desai M, Labhasetwar V, Walter E, Levy R, Amidon G. The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent. Pharmaceutical Research 1997; 14 (11): 1568-1573. https://doi.org/10.1023/A:1012126301290
  • 33. An JC. Synthesis, characterization, and kinetic studies of ionizing radiation-induced intra- and inter-crosslinked poly(vinyl pyrrolidone) nanohydrogels. College Park: Univ. of Maryland; 2007.
  • 34. Tanaka T, Fillmore DJ. Kinetics of swelling of gels. The Journal of Chemical Physics 1979; 70 (3): 1214-1218. https://doi.org/10.1063/1.437602
  • 35. Ulański P, Janik I, Rosiak JM. Radiation formation of polymeric nanogels. Radiation Physics and Chemistry 1998; 52 (1–6): 289-294. http://dx.doi.org/10.1016/S0969-806X(98)00155-8
  • 36. Ulanski P, Kadlubowski S, Rosiak JM. Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis. Radiation Physics and Chemistry 2002; 63 (3-6): 533-537. https://doi.org/10.1016/S0969-806X(01)00549-7
  • 37. Güven O, Eltan E. Molecular association in aqueous solutions of high molecular weight poly (N-vinyl-2-pyrrolidone). Die Makromolekulare Chemie 1981; 182 (11): 3129-3134. https://doi.org/10.1002/macp.1981.021821119
  • 38. An JC. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation. Journal of Industrial and Engineering Chemistry 2010; 16 (5): 657-661. https://doi.org/10.1016/j.jiec.2010.05.013
  • 39. Azim A-AAA, Tenhu H, Maerta J, Sundholm F. Flexibility and hydrodynamic properties of poly (vinylpyrrolidone) in non-ideal solvents. Polymer Bulletin 1992; 29 (3-4): 461-467. https://doi.org/10.1007/BF00944845
  • 40. Elias VH-G. Konstitution und lösungseigenschaften von makromolekülen. I. ermittlung von Θ-lösungen. Die Makromolekulare Chemie 1961; 50 (1): 1-19 (in German). https://doi.org/10.1002/macp.1961.020500101
  • 41. Meza R, Gargallo L. Unperturbed dimensions of polyvinylpyrrolidone in pure solvents and in binary mixtures. European Polymer Journal 1977; 13 (3): 235-239. https://doi.org/10.1016/0014-3057(77)90119-7
  • 42. Max J-J, Chapados C. Infrared spectroscopy of acetone–water liquid mixtures. I. Factor analysis. The Journal of Chemical Physics 2003; 119 (11): 5632-5643. https://doi.org/10.1063/1.1600438
  • 43. Bueno VB, Cuccovia IM, Chaimovich H, Catalani LH. PVP superabsorbent nanogels. Colloid Polym Sci 2009; 287 (6): 705-713. https:// doi.org/10.1007/s00396-009-2017-0
  • 44. Bharali DJ, Sahoo SK, Mozumdar S, Maitra A. Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. Journal of Colloid and Interface Science 2003; 258 (2): 415-423. http://dx.doi.org/10.1016/S0021-9797(02)00099-1
  • 45. An JC, Weaver A, Kim B, Barkatt A, Poster D et al. Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel. Polymer 2011; 52 (25): 5746-5755. https://doi.org/10.1016/j.polymer.2011.09.056.
  • 46. Kiraç F, Güven O. Gamma radiation induced synthesis of poly(N-isopropylacrylamide) mediated by Reversible Addition–Fragmentation Chain Transfer (RAFT) process. Radiation Physics and Chemistry 2015; 112: 76-82. https://doi.org/10.1016/j.radphyschem.2015.03.013
  • 47. Wu C, Zhou S. Laser light scattering study of the phase transition of poly (N-isopropylacrylamide) in water. 1. Single chain. Macromolecules 1995; 28 (24): 8381-8387. https://doi.org/10.1021/ma00128a056
  • 48. Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O. Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer 2005; 46 (18): 7118-7131. https://doi.org/10.1016/j.polymer.2005.05.097.
  • 49. Munk T, Hietala S, Kalliomäki K, Nuopponen M, Tenhu H. Behaviour of stereoblock poly (N-isopropyl acrylamide) in acetone–water mixtures. Polymer bulletin 2011; 67 (4): 677-692. https://doi.org/10.1007/s00289-011-0458-3
  • 50. Brijitta J, Tata BVR, Kaliyappan T. Phase Behavior of Poly(N-isopropylacrylamide) Nanogel Dispersions: Temperature Dependent Particle Size and Interactions. Journal of Nanoscience and Nanotechnology 2009; 9 (9): 5323-5328. https://doi.org/10.1166/jnn.2009.1144
  • 51. Borsos A, Gilányi T. Interaction of Cetyl-trimethylammonium Bromide with Swollen and Collapsed Poly(N-isopropylacrylamide) Nanogel Particles. Langmuir 2011; 27 (7): 3461-3467. https://doi.org/10.1021/la200312g
APA Sütekin S, KIRAÇ F, Guven O (2023). Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. , 386 - 398. 10.55730/1300-0527.3545
Chicago Sütekin S. Duygu,KIRAÇ Feyza,Guven Olgun Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. (2023): 386 - 398. 10.55730/1300-0527.3545
MLA Sütekin S. Duygu,KIRAÇ Feyza,Guven Olgun Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. , 2023, ss.386 - 398. 10.55730/1300-0527.3545
AMA Sütekin S,KIRAÇ F,Guven O Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. . 2023; 386 - 398. 10.55730/1300-0527.3545
Vancouver Sütekin S,KIRAÇ F,Guven O Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. . 2023; 386 - 398. 10.55730/1300-0527.3545
IEEE Sütekin S,KIRAÇ F,Guven O "Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes." , ss.386 - 398, 2023. 10.55730/1300-0527.3545
ISNAD Sütekin, S. Duygu vd. "Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes". (2023), 386-398. https://doi.org/10.55730/1300-0527.3545
APA Sütekin S, KIRAÇ F, Guven O (2023). Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. Turkish Journal of Chemistry, 47(2), 386 - 398. 10.55730/1300-0527.3545
Chicago Sütekin S. Duygu,KIRAÇ Feyza,Guven Olgun Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. Turkish Journal of Chemistry 47, no.2 (2023): 386 - 398. 10.55730/1300-0527.3545
MLA Sütekin S. Duygu,KIRAÇ Feyza,Guven Olgun Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. Turkish Journal of Chemistry, vol.47, no.2, 2023, ss.386 - 398. 10.55730/1300-0527.3545
AMA Sütekin S,KIRAÇ F,Guven O Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. Turkish Journal of Chemistry. 2023; 47(2): 386 - 398. 10.55730/1300-0527.3545
Vancouver Sütekin S,KIRAÇ F,Guven O Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes. Turkish Journal of Chemistry. 2023; 47(2): 386 - 398. 10.55730/1300-0527.3545
IEEE Sütekin S,KIRAÇ F,Guven O "Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes." Turkish Journal of Chemistry, 47, ss.386 - 398, 2023. 10.55730/1300-0527.3545
ISNAD Sütekin, S. Duygu vd. "Additive-free synthesis of poly(n-vinyl pyrrolidone) and poly(n-isopropylacrylamide) nanogels with controlled sizes". Turkish Journal of Chemistry 47/2 (2023), 386-398. https://doi.org/10.55730/1300-0527.3545