Yıl: 2023 Cilt: 47 Sayı: 2 Sayfa Aralığı: 399 - 408 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3546 İndeks Tarihi: 12-06-2023

GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis

Öz:
Nanostructured semiconductor materials are considered potential candidates for the degradation of textile wastewater via the photocatalytic process. This study aims to produce hexagonal gallium nitride (GaN) nanoplates and zinc oxide (ZnO) nanoparticles in a deionized water environment utilizing a one-step arc discharge process. Detailed characterization of samples has been completed via scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV visible spectroscopy methods. The hybrid nanostructure morphologies consist of nanoplates and nanorods of different sizes. The photoperformance of GaN/ZnO hybrid nanostructures was assessed via the malachite green (MG) dye degradation under UV exposure. Under UV exposure, the degradation yield reached 98% in 60 min. Compared to individual ZnO and GaN nanoparticles, the photocatalytic reaction rate of the GaN/ZnO photocatalyst is 2.2 and 3.6 times faster, respectively. Besides, the GaN/ZnO hybrid nanostructures show excellent photocatalytic stability. The energy consumption of the photocatalytic degradation in the presence of GaN/ZnO hybrid nanostructures was 1.688 kWhL–1. These results demonstrate that the GaN/ZnO hybrid nanostructures with improved photocatalytic activity are a reasonable option for the decomposition of textile wastewater under UV light exposure.
Anahtar Kelime: Hybrid materials nanostructures photocatalysts malachite green

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bai S, Shen X. Graphene–inorganic nanocomposites. Rsc Advances 2012; 2 (1): 64-98. https://doi.org/10.1039/C1RA00260K
  • 2. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chemical Society Reviews 2012; 41 (2): 666-686. https://doi.org/10.1039/ C1CS15078B
  • 3. Zhang C, Hao R, Yin H, Liu F, Hou Y. Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 2012; 4 (23): 7326-7329. https://doi.org/10.1039/C2NR32612D
  • 4. Müllen K. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS nano 2014; 8 (7): 6531-6541. https://doi.org/10.1021/nn503283d
  • 5. Zhou Z, Lan C, Wei R, Ho JC. Transparent metal-oxide nanowires and their applications in harsh electronics. Journal of Materials Chemistry C 2019; 7 (2): 202-217. https://doi.org/10.1039/C8TC04501A
  • 6. Millán J, Godignon P. Wide Bandgap Power Semiconductor Devices. In: Spanish Conference on Electron Devices; Spain; 2013. pp. 293– 296. https://doi.org/10.1109/CDE.2013.6481400
  • 7. Shenai K, Scott RS, Baliga BJ. Optimum semiconductors for high-power electronics. IEEE Transactions on Electron Devices 1989; 36 (9): 1811-1823. https://doi.org/10.1109/16.34247
  • 8. Gu C, Wheeler P, Castellazzi A, Watson AJ, Effah F. Semiconductor devices in solid-state/hybrid circuit breakers: Current status and future trends. Energies 2017; 10 (4): 495. https://doi.org/10.3390/en10040495
  • 9. Neudeck PG, Okojie RS, Chen LY. High-temperature electronics-a role for wide bandgap semiconductors? Proceedings of the IEEE 2002; 90 (6): 1065-1076. https://doi.org/10.1109/JPROC.2002.1021571
  • 10. Khan MAH, Rao MV. Gallium nitride (GaN) nanostructures and their gas sensing properties: a review. Sensors 2020; 20 (14): 3889. https:// doi.org/10.3390/s20143889
  • 11. Rajbhandari S, McKendry JJ, Herrnsdorf J, Chun H, Faulkner G, et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semiconductor Science and Technology 2017; 32 (2): 023001. https://doi.org/10.1088/1361-6641/32/2/023001
  • 12. Khan MAH, Rao MV, Li Q. Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 2019; 19 (4): 905. https://doi.org/10.3390/s19040905
  • 13. Prokopuk N, Son KA, George T, Moon JS. Development of GaN-based micro chemical sensor nodes. IEEE 2004; pp. 4. https://doi. org/10.1109/ICSENS.2005.1597670
  • 14. Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. Journal of Physics: Condensed Matter 2004; 16 (29): R961. https://doi.org/10.1088/0953-8984/16/29/R02
  • 15. Podolska A, Seeber RM, Mishra UK, Pfleger KDG, Parish G et al. Detection of biological reactions by AlGaN/GaN biosensor. COMMAD 2012; IEEE; 2012. pp. 75-76. https://doi.org/10.1109/COMMAD.2012.6472367
  • 16. Ray C, Pal T. Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. Journal of Materials Chemistry A 2017; 5 (20): 9465-9487.
  • 17. Ganguly A, Anjaneyulu O, Ojha K, Ganguli AK. Oxide-based nanostructures for photocatalytic and electrocatalytic applications. CrystEngComm 2015; 17 (47): 8978-9001. https://doi.org/10.1039/C5CE01343G
  • 18. Guo Y, Ma L, Mao K, Ju M, Bai Y, et al. Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horizons 2019; 4 (3): 592-600. https://doi.org/10.1039/C8NH00273H
  • 19. Bajpai R, Motayed A, Davydov AV, Bertness KA, Zaghloul ME. UV-assisted alcohol sensing with zinc oxide-functionalized gallium nitride nanowires. IEEE electron device letters 2012; 33 (7): 1075-1077. https://doi.org/10.1109/LED.2012.2194129
  • 20. Avcı A, Eskizeybek V, Gülce H, Haspulat B, Şahin ÖS. ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties. Applied Physics A 2014; 116 (3): 1119-1125. https://doi.org/10.1007/s00339-013-8194-1
  • 21. Bae HS, Yoon MH, Kim JH, Im S. Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters 2003; 83 (25): 5313-5315. https://doi.org/10.1063/1.1633676
  • 22. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M et al. A comprehensive review of ZnO materials and devices. Journal of applied physics 2005; 98 (4): 11. https://doi.org/10.1063/1.1992666
  • 23. Saoud K, Alsoubaihi R, Bensalah N, Bora T, Bertino M et al. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Materials Research Bulletin 2015; 63: 134-140. https://doi.org/10.1016/j.materresbull.2014.12.001
  • 24. Muth JF, Kolbas RM, Sharma AK, Oktyabrsky S, Narayan J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. Journal of Applied Physics 1999; 85 (11): 7884-7887. https://doi. org/10.1063/1.370601
  • 25. Hadi WA, Shur MS, O’Leary SK. Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review. Journal of Materials Science: Materials in Electronics 2014; 25 (11): 4675- 4713. https://doi.org/10.1007/s10854-014-2226-2
  • 26. Godin R, Hisatomi T, Domen K, Durrant JR. Understanding the visible-light photocatalytic activity of GaN: ZnO solid solution: the role of Rh2− yCryO3 cocatalyst and charge carrier lifetimes over tens of seconds. Chemical science 2018; 9 (38): 7546-7555. https://doi.org/10.1039/ C8SC02348D
  • 27. Mao W, Bao K, Sun R, Li Z, Rong L. Synthesis of hexagonal GaN nanoplates via a convenient solid state reaction. Journal of Alloys and Compounds 2015; 620: 5-9. https://doi.org/10.1016/j.jallcom.2014.09.066
  • 28. Doughty RM, Chowdhury FA, Mi Z, Osterloh FE. Surface photovoltage spectroscopy observes junctions and carrier separation in gallium nitride nanowire arrays for overall water-splitting. The Journal of Chemical Physics 2020; 153 (14): 144707. https://doi. org/10.1063/5.0021273
  • 29. Hoyer P, Weller H. Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chemical physics letters 1994; 221 (5-6): 379-384. https://doi.org/10.1016/0009-2614(94)00287-8
  • 30. De Merchant J, Cocivera M. Preparation and doping of zinc oxide using spray pyrolysis. Chemistry of Materials 1995; 7 (9): 1742-1749.
  • 31. Maruyama T, Shionoya J. Zinc oxide thin films prepared by chemical vapour deposition from zinc acetate. Journal of materials science letters 1992; 11 (3): 170-172. https://doi.org/10.1007/BF00724682
  • 32. Izaki M, Omi T. Transparent zinc oxide films prepared by electrochemical reaction. Applied Physics Letters 1996; 68 (17): 2439-2440. https://doi.org/10.1063/1.116160
  • 33. Brehm JU, Winterer M, Hahn H. Synthesis and local structure of doped nanocrystalline zinc oxides. Journal of applied physics 2006; 100 (6): 064311. https://doi.org/10.1063/1.2349430
  • 34. Üstün T, Eskizeybek V, Avcı A. Facile And Template-Free Synthesis Of CuO Nanoparticles. Konya Mühendislik Bilimleri Dergisi 2019; 7 (4): 696-704. https://doi.org/10.36306/konjes.654449
  • 35. Van KN, Thi VNN, Thi TPT, Truong TT, Le Thi TL et. al. A novel preparation of GaN-ZnO/g-C3N4 photocatalyst for methylene blue degradation. Chemical Physics Letters 2021; 763: 138191. https://doi.org/10.1016/j.cplett.2020.138191
  • 36. Leng B, Zhang X, Chen S, Li J, Sun Z et al. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles. Journal of Materials Science & Technology 2021; 94: 67-76. https://doi.org/10.1016/j.cplett.2020.138191
  • 37. Eskizeybek V, Avcı A, Chhowalla M. Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination. Crystal Research and Technology 2011; 46 (10): 1093-1100. https://doi.org/10.1002/crat.201100221
  • 38. Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental 2012; 119: 197-206. https://doi.org/10.1016/j.apcatb.2012.02.034
  • 39. Haspulat Taymaz B, Eskizeybek V, Kamış H. A novel polyaniline/NiO nanocomposite as a UV and visible-light photocatalyst for complete degradation of the model dyes and the real textile wastewater. Environmental Science and Pollution Research 2022; 28, 6700-6718. https:// doi.org/10.1007/s11356-020-10956-0
  • 40. Zhuang H, Li B, Zhang S, Zhang X, Xue C et al. Fabrication of High-Density GaN Nanowires through Ammoniating Ga2O3/Nb Films. Acta Physica Polonica A 2008; 113 (2): 723-730.
  • 41. Alamdari S, Sasani Ghamsari M, Lee C, Han W, Park HH et al. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences 2020; 10 (10): 3620. https://doi.org/10.3390/app10103620
  • 42. Tang T, Li C, He W, Hong W, Zhu H et al. Preparation of MOF-derived C-ZnO/PVDF composites membrane for the degradation of methylene blue under UV-light irradiation. Journal of Alloys and Compounds 2022; 894: 162559. https://doi.org/10.1016/j.jallcom.2021.162559
  • 43. Shaikh B, Bhatti MA, Shah AA, Tahira A, Shah AK et al. Mn3O4@ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green. Nanomaterials 2022; 12 (21): 3754. https://doi. org/10.3390/nano12213754
  • 44. Zhang Y, Liu B, Chen N, Du Y, Ding T et al. Synthesis of SnO2/ZnO flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green. Optical Materials 2022; 133: 112978. https://doi.org/10.1016/j.optmat.2022.112978
APA Üstün T, Haspulat Taymaz B, ESKIZEYBEK V, Kamis H, AVCI A (2023). GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. , 399 - 408. 10.55730/1300-0527.3546
Chicago Üstün Tugay,Haspulat Taymaz Bircan,ESKIZEYBEK VOLKAN,Kamis Handan,AVCI AHMET GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. (2023): 399 - 408. 10.55730/1300-0527.3546
MLA Üstün Tugay,Haspulat Taymaz Bircan,ESKIZEYBEK VOLKAN,Kamis Handan,AVCI AHMET GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. , 2023, ss.399 - 408. 10.55730/1300-0527.3546
AMA Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. . 2023; 399 - 408. 10.55730/1300-0527.3546
Vancouver Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. . 2023; 399 - 408. 10.55730/1300-0527.3546
IEEE Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A "GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis." , ss.399 - 408, 2023. 10.55730/1300-0527.3546
ISNAD Üstün, Tugay vd. "GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis". (2023), 399-408. https://doi.org/10.55730/1300-0527.3546
APA Üstün T, Haspulat Taymaz B, ESKIZEYBEK V, Kamis H, AVCI A (2023). GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Turkish Journal of Chemistry, 47(2), 399 - 408. 10.55730/1300-0527.3546
Chicago Üstün Tugay,Haspulat Taymaz Bircan,ESKIZEYBEK VOLKAN,Kamis Handan,AVCI AHMET GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Turkish Journal of Chemistry 47, no.2 (2023): 399 - 408. 10.55730/1300-0527.3546
MLA Üstün Tugay,Haspulat Taymaz Bircan,ESKIZEYBEK VOLKAN,Kamis Handan,AVCI AHMET GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Turkish Journal of Chemistry, vol.47, no.2, 2023, ss.399 - 408. 10.55730/1300-0527.3546
AMA Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Turkish Journal of Chemistry. 2023; 47(2): 399 - 408. 10.55730/1300-0527.3546
Vancouver Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Turkish Journal of Chemistry. 2023; 47(2): 399 - 408. 10.55730/1300-0527.3546
IEEE Üstün T,Haspulat Taymaz B,ESKIZEYBEK V,Kamis H,AVCI A "GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis." Turkish Journal of Chemistry, 47, ss.399 - 408, 2023. 10.55730/1300-0527.3546
ISNAD Üstün, Tugay vd. "GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis". Turkish Journal of Chemistry 47/2 (2023), 399-408. https://doi.org/10.55730/1300-0527.3546