Yıl: 2023 Cilt: 47 Sayı: 2 Sayfa Aralığı: 476 - 494 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3553 İndeks Tarihi: 12-06-2023

New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations

Öz:
In this study, syntheses of new pyrimidine-coupled N-β-glucosides and tetra-O-acetyl derivatives were carried out. All glycoconjugates were investigated in comparison with known chemotherapeutic agents in terms of their antimicrobial and anticancer functions and DNA/protein binding affinities. Spectral data showed that all glycoside derivatives were obtained by diastereoselectivity as β-anomers. Both tested groups exhibited strong antiproliferative activity (2.29–66.84 μg/mL), but some of them had sufficiently ideal % cytotoxicity values (10.01%–16.78%). And also all synthetic compounds exhibited remarkable antibacterial activity against human pathogenic bacteria. Binding of these compounds to CT-DNA resulted in significant changes in spectral properties, consistent with groove binding. Molecular docking studies of some compounds revealed that the docking score, complex energy, and MM-GBSA $ΔG_{Bind}$ energy values were consistent with the experimental results, which showed that the new compounds were potent chemotherapeutic agents. Overall bioactivity results suggest that these compounds may be candidates as new chemotherapeutic agents and deserve further pharmacological evaluation.
Anahtar Kelime: 2 4 6-trisubstituted pyrimidine N-β-D-glucosides biological activity molecular docking

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kumar S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA. Synthesis, molecular docking and biological evaluation of bis-pyrimidine Schiff base derivatives. Chemistry Central Journal 2017; 11: 1-16. https://doi.org/10.1186/s13065-017-0322-0
  • 2. Kocyigit UM, Budak Y, Gürdere MB, Ertürk F, Yencilek B et al. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Archives of Physiology and Biochemistry 2018; 124: 61-68. https://doi.org/10.1080/13813455.2017.1360914
  • 3. Gao L, Liu Q, Ren S, Wan S, Jiang T et al. Synthesis of a novel series of (e,e)-4,6–bis(styryl)-2-O-glucopyranosyl-pyrimidines and their potent multidrug resistance (mdr) reversal activity against cancer cells. Journal of Carbohydrate Chemistry 2012; 31: 620-633. https://doi. org/10.1080/07328303.2012.689041
  • 4. Prasad S, Radhakrishna V, Ravi TK. Synthesis, spectroscopic and antibacterial studies of some schiff bases of 4-(4-bromophenyl)-6-(4- chlorophenyl)-2-aminopyrimidine. Arabian Journal of Chemistry 2016; 12: 3943-3947. http://dx.doi.org/10.1016/j.arabjc.2016.03.003
  • 5. Parsonnet J. Bacterial infection as a cause of cancer. Environmental Health Perspectives 1995; 103: 263–268. http://dx.doi. org/10.2307/3432323
  • 6. Hullar MAJ, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. Cancer Research and Treatment 2014; 159: 377–399. https://doi.org/10.1007/978-3-642-38007-5_22
  • 7. Jimenez J, Chakraborty I, Rojas-Andrade M, Mascharak PK. Silver complexes of ligands derived from adamantylamines: Water-soluble silver-donating compounds with antibacterial properties. Journal of Inorganic Biochemistry 2017; 168: 13–17. https://doi.org/10.1016/j. jinorgbio.2016.12.009
  • 8. Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H. Potentially bioactive organotin (IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. European Journal of Medicinal Chemistry 2014; 84: 343-363. https://doi.org/10.1016/j. ejmech.2014.07.028
  • 9. Fosso MY, Nziko VPN, Chang CWT. Chemical synthesis of N-aryl glycosides. Journal of Carbohydrate Chemistry 2021; 31: 603-619. https://doi.org/10.1080/07328303.2012.699575
  • 10. Hamadi NB, Msaddek M. Synthesis and reactivity of N-sugar-maleimides: an access to novel highly substituted enantiopure pyrazolines. Tetrahedron Asymmetry 2012; 23: 1689-1693. https://doi.org/10.1016/j.tetasy.2012.11.005.
  • 11. Liu YY, Shi H, He GK, Song GL, Zhu HJ. Synthesis, crystal structures, and fungicidal activity of novel 1,5-diaryl-3-(glucopyranosyloxy)- 1H-pyrazoles. Helvetica Chimica Acta, 2012; 95: 1645-1656. https://doi.org/10.1002/hlca.201100509
  • 12. Hemamalini A, Nagarajan S, Das TM. A facile synthesis of sugar-pyrazole derivatives. Carbohydrate Research 2011; 346: 1814-1819. https://doi.org/10.1016/j.carres.2011.06.019
  • 13. Yin X, Zheng L, Li Y, Yin S. Synthesis and calming activity of 2-amino-4-(4-β-d-allopyranoside-phenyl)-6-3(4)-substituted phenylpyrimidines. Chemistry of Natural Compounds 2010; 46: 779–782. https://doi.org/10.1007/s10600-010-9739-6
  • 14. Çelik G. New chalcone-3-O-glycoside derivatives: Synthesis and characterization. Journal of Chemical Research 2020; 44: 598-601. https:// doi.org/10.1177/1747519820915165
  • 15. Chamberlain SD, Moorman AR, Burnette TC, de Miranda P, Krenitsky TA. Novel carbohydrate conjugates as potential prodrugs of acyclovir. Antiviral Chemistry and Chemotherapy 1994; 5: 64-73.
  • 16. Wang Y, Yao H, Hua M, Jiao Y, He H et al. Direct N-glycosylation of amides/amines with glycal donors. The Journal of Organic Chemistry 2020; 85: 7485–7493. https://doi.org/10.1021/acs.joc.0c00975
  • 17. Alwan WS, Karpoormath R, Palkar MB, Patel HM, Rane RA et al. Novel imidazo[2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans. European Journal of Medicinal Chemistry 2015; 95: 514-525. https://doi.org/10.1016/j. ejmech.2015.03.021
  • 18. Garg HG, von dem Bruch K, Kunz H. Developments in the synthesis of glycopeptides containing glycosyl L-asparagine, L-serine, and L-threonine. Advances in Carbohydrate Chemistry and Biochemistry 1994; 50: 277-310. https://10.1016/s0065-2318(08)60153-5
  • 19. Schmidt RR, Kinzy W. Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Advances in Carbohydrate Chemistry and Biochemistry 1994; 50: 21-123. https://doi:10.1016/s0065-2318(08)60150-x
  • 20. Váradi A, Lévai D, Tóth G, Horváth P, Noszál B, Hosztafi S. Glucosides of morphine derivatives: synthesis and characterization. Monatshefte fur Chemie 2013; 144: 255–262. https://doi.org/10.1007/s00706-012-0868-4
  • 21. Yamazoe A, Hayashi K, Kuboki A, Ohira S, Nozaki H. The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitör from Streptomyces sp. Tetrahedron Letters 2004; 5: 8359–8362. https://doi.org/10.1016/j.tetlet.2004.09.055
  • 22. Wang Q, Duan J, Tang P, Chen G, He G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Science China Chemistry 2020; 63: 1613–1618. https://doi.org/10.1007/s11426-020-9813-5
  • 23. Kahriman N, Serdaroğlu V, Peker K, Aydın A, Usta A et al. Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives. Bioorganic Chemistry 2019; 83: 580-594. https://doi.org/10.1016/j.bioorg.2018.10.068
  • 24. Kahriman N, Peker K, Serdaroğlu V, Aydın A, Usta A et al. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities. Bioorganic Chemistry 2020; 99: 103805. https://doi.org/10.1016/j.bioorg.2020.103805
  • 25. Xiang S, Ma J, Gorityala BK, Liu X-W. Stereoselective synthesis of b-N-glycosides through 2-deoxy-2-nitroglycal. Carbohydrate Research 2011; 346: 2957-2959. https://doi.org/10.1016/j.carres.2011.01.032
  • 26. Chen B, Liu Y, Liu H-W, Wang N-L, Yang B-F et al. Iridoid and aromatic glycosides from Scrophularia ningpoensis Hemsl. and their inhibition of [Ca2+]i increase induced by KCl. Chemistry & Biodiversity 2008; 5: 1723-1735. https://doi.org/10.1002/cbdv.200890161
  • 27. Bubb WA. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance Part A 2003; 19A (1): 1-19. https://doi.org/10.1002/cmr.a.10080
  • 28. Kataev VE, Strobykina IYu, Andreeva OV, Garifullin BF, Sharipova RR et al. Synthesis and antituberculosis activity of derivatives of Stevia rebaudiana glycoside steviolbioside and diterpenoid isosteviol containing hydrazone, hydrazide, and pyridinoyl moieties. Russian Journal of Bioorganic Chemistry 2011; 37: 483-491. https://doi.org/10.1134/S1068162011030095
  • 29. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K et al. Invasive Methicillin-resistant Staphylococcus aureus infections in the United States. The Journal of the American Medical Association 2007; 298: 1763-1771. https://doi.org/10.1001/jama.298.15.1763
  • 30. Sirajuddin M, Ali S, Badshah A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltammetry. Journal of Photochemistry and Photobiology B: Biology 2013; 124: 1-19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • 31. Pyle AM, Rehmann J P, Meshoyrer R, Kumar CV, Turro NJ et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. Journal of the American Chemical Society 1989; 111: 3051–3058. https://doi.org/10.1021/ja00190a046
  • 32. N’soukpoé-Kossi CN, Descôteaux C, Asselin E, Tajmir-Riahi HA, Bérubé G. DNA interaction with novel antitumor estradiol-platinum(II) hybrid molecule: A comparative study with cisplatin drug. DNA and Cell Biology 2008; 27: 101-1077. https://doi.org/10.1089/dna.2007.0669
  • 33. Jangir DK, Charak S, Mehrotra R, Kundu S. FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. Journal of Photochemistry and Photobiology B: Biology 2011; 105: 143-148. https://doi.org/10.1016/j.jphotobiol.2011.08.003
  • 34. Aydın A, Korkmaz N, Kısa D, Türkmenoğlu B, Karadağ A. Dicyanoargentate(I)-based complexes induced in vivo tumor inhibition by activating apoptosis-related pathways. Applied Organometallic Chemistry 2022; 36: e6844. https://doi.org/10.1002/aoc.6844
  • 35. Yaylı N, Kılıç G, Çelik G, Kahriman N, Kanpolat Ş et al. Synthesis of hydroxy benzoin/benzil analogs and investigation of their antioxidant, antimicrobial, enzyme inhibition, and cytotoxic activities. Turkish Journal of Chemistry 2021; 45: 788-804. https://doi.org/10.3906/kim-2012-25
  • 36. Schrödinger Release 2021-2: Glide S, LLC, New York, NY, 2021.
  • 37. Schrödinger Release 2021-2: LigPrep S, LLC, New York, NY, 2021.
  • 38. Merde İB, Önel GT, Türkmenoğlu B, Gürsoy Ş, Dilek E et al. Synthesis of (p tolyl) 3 (2H) pyridazinone derivatives as novel Acetylcholinesterase inhibitors. ChemistrySelect 2022; 7: e202201606. https://doi.org/10.1002/slct.202201606
  • 39. Türkmenoğlu B. Investigation of novel compounds via in silico approaches of EGFR inhibitors as anticancer agents. Journal of the Indian Chemical Society 2022; 99: 100601. https://doi.org/10.1016/j.jics.2022.100601
  • 40. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Molecular Cancer Research 2015; 13: 1325-1335. https://doi.org/10.1158/1541-7786.MCR-15-0203
  • 41. McShan AC, Devlin CA, Overall SA, Park J, Toor JS et al. Molecular determinants of chaperone interactions on MHC-I for folding and antigen repertoire selection. Proceedings of the National Academy of Sciences 2019; 116: 25602-25613. https://doi.org/10.1073/pnas.191556211
  • 42. Qin J, Xie P, Ventocilla C, Zhou G, Vultur A et al. Identification of a novel family of BRAFV600E inhibitors. Journal of Medicinal Chemistry 2012; 55: 5220-5230. https://doi.org/10.1021/jm3004416
  • 43. Murray JB, Davidson J, Chen I, Davis B, Dokurno P et al. Establishing drug discovery and identification of hit series for the anti-apoptotic proteins, Bcl-2 and Mcl-1. ACS Omega 2019;4: 8892-8906. https://doi.org/10.1021/acsomega.9b00611
  • 44. Blevitt JM, Hack MD, Herman KL, Jackson PF, Krawczuk PJ et al. Structural basis of small-molecule aggregate induced inhibition of a protein– protein interaction. Journal ofMedicinal Chemistry 2017; 60: 3511-3517. https://doi.org/10.1021/acs.jmedchem.6b01836
  • 45. Cade C, Swartz P, MacKenzie SH, Clark AC. Modifying caspase-3 activity by altering allosteric networks. Biochemistry 2014; 53: 7582-7595. https://doi.org/10.1021/bi500874k.
  • 46. Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E et al. Thermodynamic and evolutionary coupling between the native and amyloid state of globular proteins. Cell Reports 2020; 31: 107512. https://doi.org/10.1016/j.celrep.2020.03.076
  • 47. Borkakoti N, Winkler FK, Williams DH, D’Arcy A, Broadhurst MJ et al. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nature Structural & Molecular Biology 1994; 1: 106-110. https://doi.org/10.1038/nsb0294-106
  • 48. Zong S, Wu M, Gu J, Liu T, Guo R et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Research 2018; 28: 1026-1034. https://doi.org/10.1038/s41422-018-0071-1
  • 49. Dengler MA, Robin AY, Gibson L, Li MX, Sandow JJ et al. BAX Activation: Mutations near its proposed non-canonical BH3 binding site reveal allosteric changes controlling mitochondrial association.Cell Reports 2019; 27: 359-373e6. https://doi.org/10.1016/j.celrep.2019.03.040
  • 50. Hoegenauer K, Soldermann N, Stauffer F, Furet P, Graveleau N et al. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Medicinal Chemistry Letters 2016; 7: 762-767. https://doi.org/10.1021/acsmedchemlett.6b00119
  • 51. Lin K, Lin J, Wu WI, Ballard J, Lee BB et al. An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Science Signaling 2012; 5: ra37.https://doi.org/10.1126/scisignal.2002618
  • 52. Wood DJ, Korolchuk S, Tatum NJ, Wang L-Z, Endicott JA et al. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chemical Biology 2019; 26: 121-130. https://doi.org/10.1016/j.chembiol.2018.10.015
  • 53. Ghanim GE, Fountain AJ, Van Roon A-MM, Rangan R, Das R et al. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021; 593: 449-453. https://doi.org/10.1038/s41586-021-03415-4
  • 54. Federici L, Lo Sterzo C, Pezzola S, Di Matteo A, Scaloni F et al. Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3- benzoxadiazol-4-ylthio)hexanol to human glutathione s-transferases. Cancer Research 2009; 69: 8025-8034. https://doi.org/10.1158/0008-5472. Can-09-1314
  • 55. Schrödinger Release 2021-2: Protein Preparation Wizard; Epik S, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2021.
  • 56. Çöl ÖF, Bozbey İ, Türkmenoğlu B, Uysal M. 3(2H)-pyridazinone derivatives: Synthesis, in-silico studies, structure-activity relationship and in-vitro evaluation for acetylcholinesterase enzyme inhibition. Journal of Molecular Structure 2022; 1261:132970. https://doi.org/10.1016/j. molstruc.2022.132970
  • 57. Schrödinger Release 2021-2: Prime S, LLC, New York, NY, 2021.
  • 58. Kuzu B, Hepokur C, Turkmenoglu B, Burmaoglu S, Algul O. Design, synthesis and in vitro antiproliferation activity of some 2-aryl and –heteroaryl benzoxazole derivatives. Future Medicinal Chemistry 2022; 14: 1027-1048. https://doi.org/10.4155/fmc-2022-0076
APA Kahriman N, PEKER K, Serdaroğlu V, aydin a, TÜRKMENOĞLU B, Usta A, YAYLI N (2023). New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. , 476 - 494. 10.55730/1300-0527.3553
Chicago Kahriman Nuran,PEKER KIVANC,Serdaroğlu Vildan,aydin ali,TÜRKMENOĞLU BURÇİN,Usta Asu,YAYLI Nurettin New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. (2023): 476 - 494. 10.55730/1300-0527.3553
MLA Kahriman Nuran,PEKER KIVANC,Serdaroğlu Vildan,aydin ali,TÜRKMENOĞLU BURÇİN,Usta Asu,YAYLI Nurettin New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. , 2023, ss.476 - 494. 10.55730/1300-0527.3553
AMA Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. . 2023; 476 - 494. 10.55730/1300-0527.3553
Vancouver Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. . 2023; 476 - 494. 10.55730/1300-0527.3553
IEEE Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N "New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations." , ss.476 - 494, 2023. 10.55730/1300-0527.3553
ISNAD Kahriman, Nuran vd. "New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations". (2023), 476-494. https://doi.org/10.55730/1300-0527.3553
APA Kahriman N, PEKER K, Serdaroğlu V, aydin a, TÜRKMENOĞLU B, Usta A, YAYLI N (2023). New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. Turkish Journal of Chemistry, 47(2), 476 - 494. 10.55730/1300-0527.3553
Chicago Kahriman Nuran,PEKER KIVANC,Serdaroğlu Vildan,aydin ali,TÜRKMENOĞLU BURÇİN,Usta Asu,YAYLI Nurettin New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. Turkish Journal of Chemistry 47, no.2 (2023): 476 - 494. 10.55730/1300-0527.3553
MLA Kahriman Nuran,PEKER KIVANC,Serdaroğlu Vildan,aydin ali,TÜRKMENOĞLU BURÇİN,Usta Asu,YAYLI Nurettin New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. Turkish Journal of Chemistry, vol.47, no.2, 2023, ss.476 - 494. 10.55730/1300-0527.3553
AMA Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. Turkish Journal of Chemistry. 2023; 47(2): 476 - 494. 10.55730/1300-0527.3553
Vancouver Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations. Turkish Journal of Chemistry. 2023; 47(2): 476 - 494. 10.55730/1300-0527.3553
IEEE Kahriman N,PEKER K,Serdaroğlu V,aydin a,TÜRKMENOĞLU B,Usta A,YAYLI N "New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations." Turkish Journal of Chemistry, 47, ss.476 - 494, 2023. 10.55730/1300-0527.3553
ISNAD Kahriman, Nuran vd. "New pyrimidine-N-β-D-glucosides: synthesis, biological evaluation, and molecular docking investigations". Turkish Journal of Chemistry 47/2 (2023), 476-494. https://doi.org/10.55730/1300-0527.3553