Yıl: 2023 Cilt: 8 Sayı: 3 Sayfa Aralığı: 293 - 305 Metin Dili: Türkçe DOI: 10.29128/geomatik.1161434 İndeks Tarihi: 03-07-2023

Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi

Öz:
Deprem ve diğer afetlere dayanıklı yapılar inşa edebilmek için yerel zemin koşullarının bilinmesi gereklidir. Jeofizik çalışmalar ve gerektiğinde jeoteknik sondajlar, yerel zemin koşullarının belirlenmesinde en çok kullanılan yöntemlerdendir. Ancak geniş çalışma alanlarında jeofizik ve jeoteknik çalışmalar yapılması uzun zaman gerektiren maliyetli bir işlemdir. Bu çalışmada çok geniş alanlardaki sismik P- ve S-dalgası hızları, zemin hâkim titreşim periyodu ve yoğunluk gibi jeofizik ve jeoteknik yöntemlerle belirlenen özellikler yerine litoloji, coğrafi eğim ve yükseklik gibi özelliklerin vekil özellikler olarak kullanılabilirliği CBS analizleri yapılarak araştırılmıştır. Vekil özellikler yöntemi kullanılarak arazi çalışmalarından elde edilen jeofizik ve jeoteknik parametreler vekil parametrelerle karşılaştırılarak analiz edilmektedir. Bu çalışmada, ters mesafe ağırlıklandırma (IDW) yöntemi ile ara değer hesaplaması (enterpolasyon) yapılmış ve her bir kriter coğrafi bilgi sistemleri (CBS) ile yeniden sınıflandırılarak karar haritaları üretilmiştir. Analizler sonucunda, sadece vekil kriterler kullanılarak inceleme alanının zemin koşulları hakkında sınıflararası %50 oranında tutarlılık olduğu tespit edilmiştir. Böylece, önerilen vekil kritelerin yalnızca genel amaçlı bölgelendirme ve sınıflama çalışmalarında kullanılabileceği anlaşılmıştır.
Anahtar Kelime: Jeofizik Jeoteknik Vekil yöntem CBS IDW

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adar, K., Büyüksaraç, A., Ercan, I., & Ulu, A. E. (2021). 2007 ve 2018 Deprem Yönetmeliklerinin Yapısal Analizler Işığında Karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi (25), 306-317.
  • AFAD. (2018). Türkiye Bina Deprem Yönetmeliği. Ankara.
  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., . . . Gedik, İ. (2011). 1: 1.250. 000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye. http://yerbilimleri.mta.gov.tr.
  • Allen, T.I., & Wald, D.J. (2007). Topographic slope as a proxy for global seismic site conditions (VS 30) and amplification around the globe: U.S. Geological Survey Open-File Report 2007-1357, 69 p
  • Alptekin, A., & Yakar, M. (2021). Mapping of local soil conditions in GIS environment: A case study in Çukurkeşlik village. Intercontinental Geoinformation Days, 2, 64-67.
  • Bai, F.-L., Hao, H., & Li, H.-N. (2010). Seismic response of a steel trussed arch structure to spatially varying earthquake ground motions including site effect. Advances in Structural Engineering, 13(6), 1089-1103.
  • Bi, K., Hao, H., & Chouw, N. (2010). Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding. Earthquake Engineering and Structural Dynamics, 39(3), 303-323.
  • Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87(2), 327-341.
  • Bray, J., & Rodriguez-Marek, A. (1997). Geotechnical site categories. Paper presented at the Proceedings of the First PEERPG&E Workshop on Seismic Reliability of Utility Lifelines, San Francisco/California.
  • BSI. (2004). BS EN 1998-1: 2004: Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. BSI London, UK.
  • BSSC. (2001). NEHRP recommended provisions for seismic regulations for new buildings and other structures 2000 edition, part 1: Provisions.
  • BSSC. (2003). NEHRP recommended provisions for seismic regulations for new buildings and other structures.
  • BSSC. (2020). NEHRP recommended provisions for new buildings and other structures.
  • Cadet, H., Bard, P. Y., & Duval, A. M. (2008). A new proposal for site classification based on ambient vibration measurements and the Kiknet strong motion data set. In Proceedings of the 14th World Conference on Earthquake Engineering (pp. 12-17).
  • Cansız, S. (2022). Türkiye’de Kullanılan Deprem Yönetmeliklerinin Özellikleri ve Deprem Hesabının Değişimi. International Journal of Engineering Research and Development, 14(1), 58-71.
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences, 7(3), 302-313.
  • Clayton, C., Steinhagen, M., Steinhagen, H., Powrie, W., Terzaghi, K., & Skempton, A. (1995). Terzaghi's theory of consolidation, and the discovery of effective stress. (Compiled from the work of K. Terzaghi and AW Skempton). Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 113(4), 191-205.
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB). (2022). https://www.atlas.gov.tr/.
  • Devi, S., Kumar, P., & Kumar, R. (2022). Strong motion modelling of the 1999 Izmit Earthquake using site effect in a semi-empirical technique: a more realistic approach. Pure and Applied Geophysics, 179(2), 483-497.
  • Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Predominant period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680-695.
  • Dobry, R., Borcherdt, R., Crouse, C., Idriss, I., Joyner, W., Martin, G. R., . . . Seed, R. (2000). New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra, 16(1), 41-67.
  • Dobry, R., Ramos, R., & Power, M. S. (1998). Site factors and site categories in seismic codes. In Site factors and site categories in seismic codes.
  • Erdik, M., Ülker, Ö., Şadan, B., & Tüzün, C. (2018). Seismic isolation code developments and significant applications in Turkey. Soil Dynamics and Earthquake Engineering, 115, 413-437.
  • Escudero, C. R., Ramirez Gaytan, A., Zamora Camacho, A., Preciado, A., Flores, K. L., & Gomez Hernandez, A. (2022). Geotechnical zonation and soil–structure interaction at Puerto Vallarta, México. Natural Hazards, 110(1), 247-267.
  • Gallipoli, M. R., & Mucciarelli, M. (2009). Comparison of site classification from VS 30, VS 10, and HVSR in Italy. Bulletin of the Seismological Society of America, 99(1), 340-351.
  • Gaytan, A. R., Estrella, H. F., Preciado, A., Bandy, W. L., Lazcano, S., Nolasco, L. A., . . . Korn, M. (2020). Subsoil classification and geotechnical zonation for Guadalajara City, México: Vs30, soil fundamental periods, 3D structure and profiles. Near Surface Geophysics, 18(2), 175-188.
  • Genç, A. F., Ergün, M., Günaydin, M., Altunişik, A. C., Ateş, Ş., Okur, F. Y., & Mosallam, A. S. (2019). Dynamic analyses of experimentally-updated FE model of historical masonry clock towers using site-specific seismic characteristics and scaling parameters according to the 2018 Turkey building earthquake code. Engineering Failure Analysis, 105, 402-426.
  • Green, R. A., Olson, S. M., Cox, B. R., Rix, G. J., Rathje, E., Bachhuber, J., . . . Martin, N. (2011). Geotechnical aspects of failures at port-au-prince seaport during the 12 january 2010 Haiti earthquake. Earthquake Spectra, 27(SUPPL. 1), 43-65.
  • Hashash, Y., Groholski, D., Phillips, C., Park, D., & Musgrove, M. (2011). DEEPSOIL 5.0, user Manual and Tutorial. University of Illinois, Urbana, IL, USA.
  • Héloïse, C., Bard, P. Y., Duval, A. M., & Bertrand, E. (2012). Site effect assessment using KiK-net data: part 2—site amplification prediction equation based on f 0 and Vsz. Bulletin of Earthquake Engineering, 10, 451-489.
  • Idriss, I., & Sun, J. (1992). User’s manual for SHAKE91: Center for Geotechnical Modeling. Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA.
  • İnyurt, S., Mekik, Ç., & Yıldırım, Ö. (2020). Deprem kaynaklı olabilecek iyonosferik değişimlerin belirlenmesi üzerine yeni bir yaklaşım geliştirilmesi. Geomatik, 5(2), 127-133.
  • Işık, E., Büyüksaraç, A., Ekinci, Y. L., Aydın, M. C., & Harirchian, E. (2020). The effect of site-specific design spectrum on earthquake-building parameters: a case study from the Marmara Region (NW Turkey). Applied Sciences, 10(20), 7247.
  • ISSMGE, T. (1999). Manual for Zonation on Seismic Geotechnical Hazard. International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE). The Japanese Geotechnical Society, Tokyo.
  • Jayaram, N., & Baker, J. W. (2009). Correlation model for spatially distributed ground motion intensities. Earthquake Engineering & Structural Dynamics, 38(15), 1687-1708.
  • Kalita, S., & Chetia, B. (2020). A novel approach for ionospheric total electron content earthquake precursor and epicenter detection for low-latitude. International Journal of Engineering and Geosciences, 5(2), 94-99.
  • Kanai, K. (1961). On microtremors. VIII. Bulletin of the Earthquake Research Institute., 39, 97-114.
  • Kanai, K., Tanaka, T., Morishita, T., & Osada, K. (1966). Observation of microtremors, XI: Matsushiro earthquake swarm areas. Bulletin of the Earthquake Research Institute, 44(Part 3).
  • Kim, H.-S., Sun, C.-G., & Cho, H.-I. (2017). Geospatial Big Data-Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area. ISPRS International Journal of Geo-Information, 6(6).
  • Kim, H.-S., Sun, C.-G., Lee, M.-G., & Cho, H.-I. (2021). Multivariate geotechnical zonation of seismic site effects with clustering-blended model for a city area, South Korea. Engineering Geology, 294, 106365.
  • Kircher, C. A., Rezaeian, S., & Luco, N. (2019). Proposed multi-period response spectra and ground motion requirements of the 2020 recommended provisions and ASCE 7-22. In Structural Engineers Association of California (SEAOC) 2019 Convention (p. 10).
  • Koçkar, M. K., & Akgün, H. (2008). Development of a geotechnical and geophysical database for seismic zonation of the Ankara Basin, Turkey. Environmental Geology, 55(1), 165-176.
  • Konakoglu, B., & Akar, A. (2020). Elazığ ve Çevresindeki İllerde Meydana Gelen Tektonik Hareketlerin TUSAGA-Aktif İstasyonlarının Konumlarına Etkisinin Statik Deformasyon Modeller Kullanılarak İncelenmesi. Geomatik, 6(2), 165-178.
  • Kor, E., & Ozcelik, Y. (2022). Seismic performance assessment of concentrically braced steel frames designed to the Turkish Building Earthquake Code 2018. Structures, 40, 759-770.
  • LeBrun, B., Duval, A.-M., Bard, P.-Y., Monge, O., Bour, M., Vidal, S., & Fabriol, H. (2004). Seismic Microzonation: A Comparison between Geotechnical and Seismological Approaches in Pointe-à-Pitre (French West Indies). Bulletin of Earthquake Engineering, 2(1), 27-50.
  • Lin, W., & Yoda, T. (2017). Chapter Two - Bridge Planning and Design. In W. Lin & T. Yoda (Eds.), Bridge Engineering (pp. 31-58): Butterworth-Heinemann.
  • Luzi, L., Puglia, R., Pacor, F., Gallipoli, M. R., Bindi, D., & Mucciarelli, M. (2011). Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bulletin of Earthquake Engineering, 9(6), 1877-1898.
  • Mayne, P. W., Christopher, B. R., & DeJong, J. (2002). Subsurface Investigations--Geotechnical Site Characterization: Reference Manual (No. FHWA-NHI-01-031). United States. Federal Highway Administration.
  • MOCT. (1997). Korean Seismic Design Standards. Seoul, Korea: Ministry of Construction and Transportation.
  • MTA. (2022). http://yerbilimleri.mta.gov.tr.
  • Mucciarelli, M., & Gallipoli, M. R. (2006). Comparison between Vs30 and other estimates of site amplification in Italy. Paper presented at the First European Conference on Earthquake Engineering and Seismology, 1-7
  • NASA. (2022). https://asterweb.jpl.nasa.gov/gdem.asp
  • Oğuz, E., Oğuz, K., & Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik, 7(3), 220-234.
  • Ozcep, T., Ozcep, F., & Ozel, O. (2011). Comparison between Vs30 and earthquake amplifications, and their reliability for seismic design codes: Adapazari (Turkey) Case. Geophysical Research Abstracts, 13.
  • Ozel, O., Cranswick, E., Meremonte, M., Erdik, M., & Safak, E. (2002). Site effects in Avcilar, west of Istanbul, Turkey, from strong-and weak-motion data. Bulletin of the Seismological Society of America, 92(1), 499-508.
  • Ozer, C. (2021). 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazığ earthquake (mw = 6.8), Eastern Turkey. Natural Hazards, 108(2), 1901-1917.
  • Pitilakis, K., Riga, E., & Anastasiadis, A. (2012). Design spectra and amplification factors for Eurocode 8. Bulletin of Earthquake Engineering, 10(5), 1377-1400.
  • Pitilakis, K., Riga, E., & Anastasiadis, A. (2013). New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4), 925-966.
  • Rahman, S. A., Islam, M. M., Salman, M. A., & Rafiq, M. R. (2022). Evaluating bank erosion and identifying possible anthropogenic causative factors of Kirtankhola River in Barishal, Bangladesh: an integrated GIS and Remote Sensing approaches. International Journal of Engineering and Geosciences, 7(2), 179-190.
  • Rai, D. C., & Murty, C. (2006). Effects of the 2005 Muzaffarabad (Kashmir) earthquake on built environment. Current Science, 90(8), 1066-1070.
  • Ramírez Eudave, R., Rodrigues, H., & Ferreira, T. M. (2022). 1 - Building survey and characterization techniques at different scales. In T. Ferreira & H. Rodrigues (Eds.), Seismic Vulnerability Assessment of Civil Engineering Structures At Multiple Scales (pp. 1-31): Woodhead Publishing.
  • Rezaeian, S., & Luco, N. (2019, August). Updates to USGS National Seismic Hazard Model (NSHM) and design ground motion maps for 2020 NEHRP recommended provisions. In SEAOC 2019 convention proceedings. Structural Engineers Association of California 2019 Convention (p. 1). Squaw Creek, CA: SEAOC.
  • Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations. Sarı, S., & Türk, T. (2021). An investigation of urban development with geographical information systems: 100-year change of Sivas City, Turkey. International Journal of Engineering and Geosciences, 6(1), 51-63.
  • Seed, H. B., Ugas, C., & Lysmer, J. (1976). Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1), 221-243.
  • Shi, G., Hu, F., & Shi, Y. (2016). Comparison of seismic design for steel moment frames in Europe, the United States, Japan and China. Journal of Constructional Steel Research, 127, 41-53.
  • Sitharam, T. G., James, N., Kolathayar, S., Sitharam, T. G., James, N., & Kolathayar, S. (2018). Local Site Effects for Seismic Zonation. Comprehensive Seismic Zonation Schemes for Regions at Different Scales, 75-108.
  • Sun, C. G. (2012). Applications of a GIS-based geotechnical tool to assess spatial earthquake hazards in an urban area. Environmental Earth Sciences, 65, 1987-2001.
  • Sun, C. G., Kim, D. S., & Chung, C. K. (2005). Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland areas of Korea. Engineering Geology, 81(4), 446-469.
  • Sun, C. G., Kim, H. S., & Cho, H. I. (2018). Geo-proxy-based site classification for regional zonation of seismic site effects in South Korea. Applied Sciences, 8(2), 314.
  • Sun, C. G., Kim, H. S., Chung, C. K., & Chi, H. C. (2014). Spatial zonations for regional assessment of seismic site effects in the Seoul metropolitan area. Soil Dynamics and Earthquake Engineering, 56, 44-56.
  • Tremblay, R., Dehghani, M., Fahnestock, L., Herrera, R., Canales, M., Clifton, C., & Hamid, Z. (2016). Comparison of seismic design provisions for buckling restrained braced frames in Canada, United States, Chile, and New Zealand. Structures, 8, 183-196.
  • Uang, C. M. (1991). Comparison of seismic force reduction factors used in USA and Japan. Earthquake engineering & structural dynamics, 20(4), 389-397.
  • Urfalı, T., & Eymen, A. (2021). CBS ve AHP yöntemi yardımıyla Kayseri İli Örneğinde rüzgâr enerji santrallerinin yer seçimi. Geomatik, 6(3), 227-237.
  • Von Thun, J. L., Division, A. S. O. C. E. G. E., & Geologists, A. o. E. (1988). Earthquake Engineering and Soil Dynamics II: Recent Advances in Ground-motion Evaluation: Proceedings of the Specialty Conference. University of Michigan: The Society.
  • Wang, Y., Cao, Z., & Li, D. (2016). Bayesian perspective on geotechnical variability and site characterization. Engineering Geology, 203, 117-125.
  • Yalçın, C., & Yüce, M. (2019). Burdur’da güneş enerjisi santrali (ges) yatırımına uygun alanların cbs yöntemiyle tespiti. Geomatik, 5(1), 36-46.
  • Yilmaz, O. S., Özkan, G., & Gülgen, F. (2021). Determining highway slope ratio using a method based on slope angle calculation. International Journal of Engineering and Geosciences, 6(2), 98-103.
  • Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., . . . Ogawa, H. (2006). An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96(3), 914-925.
APA Doğan A, Başeğmez M, AYDIN C (2023). Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. , 293 - 305. 10.29128/geomatik.1161434
Chicago Doğan Ayhan,Başeğmez Murat,AYDIN Cevdet Coşkun Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. (2023): 293 - 305. 10.29128/geomatik.1161434
MLA Doğan Ayhan,Başeğmez Murat,AYDIN Cevdet Coşkun Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. , 2023, ss.293 - 305. 10.29128/geomatik.1161434
AMA Doğan A,Başeğmez M,AYDIN C Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. . 2023; 293 - 305. 10.29128/geomatik.1161434
Vancouver Doğan A,Başeğmez M,AYDIN C Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. . 2023; 293 - 305. 10.29128/geomatik.1161434
IEEE Doğan A,Başeğmez M,AYDIN C "Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi." , ss.293 - 305, 2023. 10.29128/geomatik.1161434
ISNAD Doğan, Ayhan vd. "Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi". (2023), 293-305. https://doi.org/10.29128/geomatik.1161434
APA Doğan A, Başeğmez M, AYDIN C (2023). Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik, 8(3), 293 - 305. 10.29128/geomatik.1161434
Chicago Doğan Ayhan,Başeğmez Murat,AYDIN Cevdet Coşkun Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik 8, no.3 (2023): 293 - 305. 10.29128/geomatik.1161434
MLA Doğan Ayhan,Başeğmez Murat,AYDIN Cevdet Coşkun Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik, vol.8, no.3, 2023, ss.293 - 305. 10.29128/geomatik.1161434
AMA Doğan A,Başeğmez M,AYDIN C Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik. 2023; 8(3): 293 - 305. 10.29128/geomatik.1161434
Vancouver Doğan A,Başeğmez M,AYDIN C Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik. 2023; 8(3): 293 - 305. 10.29128/geomatik.1161434
IEEE Doğan A,Başeğmez M,AYDIN C "Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi." Geomatik, 8, ss.293 - 305, 2023. 10.29128/geomatik.1161434
ISNAD Doğan, Ayhan vd. "Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi". Geomatik 8/3 (2023), 293-305. https://doi.org/10.29128/geomatik.1161434