Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi

Yıl: 2023 Cilt: 4 Sayı: 1 Sayfa Aralığı: 161 - 176 Metin Dili: Türkçe DOI: 10.55546/jmm.1211398 İndeks Tarihi: 03-07-2023

Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi

Öz:
Türkiye farklı iklim kuşaklarını içinde barından nadir ülkelerden biridir. Oldukça soğuk bölgelerinin yanında ılıman iklim gösteren bölgeleri de bulunmaktadır. Bu çeşitlilik iklimlendirme uygulamalarında tek tip bir yöntem kullanılmasını da sınırlamaktadır. Güneyinde yer alan illerde ısıtma uygulamalarında çoğu zaman geleneksel elektrikli ısıtıcılar yeterli olurken, diğer bölgelerde yoğun olarak doğalgaz kullanılmaktadır. Diğer taraftan toprak kaynaklı ısı pompaları dünyada alternatif iklimlendirme sistemleri olarak kullanılmaya başlamıştır. Fakat bu sistemlerin ilk kurulum maliyetleri kullanımını oldukça sınırlamaktadır. Fakat son yıllarda enerji arzında yaşanan sorunlar özellikle de Avrupa bölgesindeki doğalgaz arzındaki sıkıntılar ciddi boyutlara ulaşmıştır. Bu kapsamda, bu çalışmada ısıtma uygulamalarında toprak kaynaklı ısı pompası ile doğalgaz sistemi karşılaştırılmış ve tekno-ekonomik analizleri gerçekleştirilmiştir. Elde edilen sonuçlar ile de bu sistemlerin yaygın kullanımı sağlamak için devlet tarafından sağlanması gereken optimum teşvik miktarları belirlenmiştir. Mevcut duruma göre yaklaşık %65 oranında teşvik gerektiği öngörülse de Avrupa bölgesindeki doğalgaz birim fiyat artışları göz önüne alındığında bu oran %36,8’e kadar düşmektedir.
Anahtar Kelime: Toprak kaynaklı ısı pompası sistemleri Doğalgaz Maliyet analizi Soğuk iklimler Yaşam döngüsü maliyeti

Determining the optimum amount of incentive for using a ground source heat pump as an alternative to the natural gas system in space heating applications

Öz:
Turkey is one of the rare countries that have different climatic zones. In addition to the frigid regions, there are also regions with a temperate climate. This diversity also limits the use of a uniform method in conditioning applications. While conventional electric heaters are often sufficient for heating applications in the provinces located in the south, natural gas is used extensively in other regions. On the other hand, ground-source heat pumps have started to be used as alternative conditioning systems worldwide. However, the initial setup costs of these systems limit their use considerably. However, the problems experienced in energy supply in recent years, especially in the natural gas supply in the European region, have reached severe dimensions. In this context, in this study, ground source heat pumps and natural gas systems were compared, and techno-economic analyzes were carried out in heating applications. With the results obtained, the optimum amount of incentives to be provided by the state to ensure the widespread use of these systems has been determined. Although it is foreseen that approximately 65% incentives are required according to the current situation, this rate drops to 36.8% when the natural gas unit price increases in the European region are taken into account.
Anahtar Kelime: Cold climates Life cycle cost Ground source heat pump systems Natural gas Cost analysis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bck Doğalgaz, Mekanik Tesisat, Sivas, 2021.
  • Bertsch, S. S., Groll, E. A. Two-stage air-source heat pump for residential heating and cooling applications in northern U.S. climates. International Journal of Refrigeration, 31(7), 1282-1292, 2008.
  • Biglarian, H., Saidi, M. H., Abbaspour, M., Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate. International Journal of Environmental Science and Technology, 16(7), 3091-3098, 2019.
  • Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), Eligibility requirements. https://www.bafa.de/DE/Energie/Heizen_mit_Erneuerbaren_Energien/Foerdervoraussetzungen/foerdervoraussetzungen_node.html, 2020.
  • Ekberli, İ., Gülser, Ç., Özdemir N., Toprakların Termo-Fiziksel Özellikleri ve Isısal Yayınım Katsayısının Değerlendirilmesi. OMÜ Zir. Fak. Dergisi, 20(2), 85-91, 2005.
  • Environmental Protection Agency (EPA), GHG Reduction Programs Strategies. https://www.epa.gov/climateleadership/ghg-reduction-programs-strategies, 2022.
  • Esen, H., Inalli, M., Esen, M., A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Building and Environment, 42(5), 1955-1965, 2007.
  • Esen, H., Inalli, M., Esen, M., Pihtili, K., Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Building and Environment, 42(10), 3606-3615, 2007.
  • Esen, H., Inalli, M., Esen, M., Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conversion and Management, 47(9-10), 1281-1297, 2006.
  • EurObserv’ER, Heat pumps barometer 2021. https://www.eurobserv-er.org/heat-pumps-barometer-2021/, 2022.
  • European Heat Pump Association (EHPA), The European Heat Pump Market and Statistics Report. https://www.ehpa.org/market-data/market-report-2021/, 2021.
  • Eurostat, Electricity prices for household consumers-bi-annual data. Statistics. https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/table?lang=en, 2022a.
  • Eurostat, Gas prices for household consumers-bi-annual data. Statistics. https://ec.europa.eu/eurostat/databrowser/view/NRG_PC_202__custom_3678447/default/line?lang=en, 2022b.
  • Guoyuan, M., Qinhu, C., Yi, J., Experimental investigation of air-source heat pump for cold regions. International Journal of Refrigeration, 26(1), 12-18, 2003.
  • Habibi, M., Hakkaki-Fard, A., Evaluation and improvement of the thermal performance of different types of horizontal ground heat exchangers based on techno-economic analysis. Energy Conversion and Management, 171, 1177-1192, 2018.
  • Han, J., Cui, M., Chen, J., Lv, W., Analysis of thermal performance and economy of ground source heat pump system: a case study of the large building. Geothermics, 89, 101929, 2021.
  • HeatCAD, ASHRAE 2021 Climate Data (22.0.0080), 2022.
  • Hepbasli, A., Akdemir, O., Hancioglu, E., Experimental study of a closed loop vertical ground source heat pump system. Energy Conversion and Management, 44(4), 527-548, 2003.
  • Hepbasli, A., Kalinci, Y., A review of heat pump water heating systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1211-1229, 2009.
  • https://www.eia.gov/analysis/studies/buildings/equipcosts/pdf/full.pdf, 2018.
  • International Energy Agency (IEA), Global Status Report for Buildings and Construction, 2019.
  • Kapıcıoğlu, A., Energy and exergy analysis of a ground source heat pump system with a slinky ground heat exchanger supported by nanofluid. Journal of Thermal Analysis and Calorimetry, 147(2), 1455-1468, 2022.
  • Kapıcıoğlu, A., Esen, H., Economic and environmental assessment of ground source heat pump system: The case of Turkey. Sustainable Energy Technologies and Assessments, 53(Part B), 2022.
  • Kavanaugh, S., Rafferty, K., Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems. ASHRAE, 2014.
  • Lei, Y., Tan, H., Li, Y., Technical-economic evaluation of ground source heat pump for office buildings in China. Energy Procedia, 152, 1069-1078, 2018.
  • Nguyen, H. V., Law, Y. L. E., Alavy, M., Walsh, P. R., Leong, W. H., Dworkin, S. B., An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America. Applied Energy, 125, 28-38, 2014.
  • Nordgård-Hansen, E., Kishor, N., Midttømme, K., Risinggård, V. K., Kocbach, J., Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump. Applied Energy, 308, 118370, 2022.
  • Orta Anadolu Kalkınma Ajansı, Sivas Tarım Hayvancılık ve Gıda Sektörel Çalışma Grubu Raporu, 2011.
  • Özbek Mühendislik, https://www.ozbek.com.tr/, 2022.
  • Petit, P. J., Meyer, J. P., Economic potential of vertical ground-source heat pumps compared to air-source air conditioners in South Africa. Energy, 23(2), 137-143, 1998.
  • Raugeo Sysyem Technology, Innovative Heating, Cooling and Storage Using Ground-Source Energy Technical Information 827600/1EN. www.rehau.co.uk, 2012.
  • REHAU, https://www.rehau.com/tr-tr, 2021.
  • Shen, P., Lukes, J. R., Impact of global warming on performance of ground source heat pumps in US climate zones. Energy Conversion and Management, 101, 632-643, 2015.
  • Statista, Turkey - Inflation rate 2027. https://www.statista.com/statistics/277044/inflation-rate-in-turkey/, 2022.
  • Su, C. W., Khan, K., Umar, M., Chang, T., Renewable energy in prism of technological innovation and economic uncertainty. Renewable Energy, 189, 467-478, 2022.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Elektrik Yatırım Rehberi, https://enerji.gov.tr/bilgi-merkezi-yatirim-destekleri-elektrik-yatirim-rehberi, 2022.
  • TCMB, Reeskont ve Avans Faiz Oranları, https://www.tcmb.gov.tr/wps/wcm/connect /TR/TCMB+TR/Main+Menu/Temel+Faaliyetler/Para+Politikasi/Reeskont+ve+Avans+Faiz+Oranlari, 2022.
  • U.S. Energy Information Administration (EIA), Updated Buildings Sector Appliance and Equipment Costs and Efficiency
  • Viessmann, VITOCAL brine/water and water/water heat pump technical guide, 2019.
  • Viessmann, Vitodens product data, 2021.
  • Wang, S., Liu, X., Gates, S., An introduction of new features for conventional and hybrid GSHP simulations in eQUEST 3.7. Energy and Buildings, 105, 368-376, 2015.
  • Xing, J., Ren, P., Ling, J., Analysis of energy efficiency retrofit scheme for hotel buildings using eQuest software: A case study from Tianjin, China. Energy and Buildings, 87, 14-24, 2015a.
  • Xing, J., Ren, P., Ling, J., Analysis of energy efficiency retrofit scheme for hotel buildings using eQuest software: A case study from Tianjin, China. Energy and Buildings, 87, 14-24, 2015b.
  • Yang, L., Zhou, X., Feng, X., Renewable energy led Economic Growth Hypothesis: Evidence from novel panel methods for N-11 economies. Renewable Energy, 197, 790-797, 2022.
  • You, T., Wu, W., Shi, W., Wang, B., Li, X., An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions. Applied Energy, 177, 515-536, 2016.
  • Zhou, K., Mao, J., Li, Y., Zhang, H., Performance assessment and techno-economic optimization of ground source heat pump for residential heating and cooling: A case study of Nanjing, China. Sustainable Energy Technologies and Assessments, 40, 100782, 2020.
APA Kapicioglu A (2023). Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. , 161 - 176. 10.55546/jmm.1211398
Chicago Kapicioglu Abdullah Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. (2023): 161 - 176. 10.55546/jmm.1211398
MLA Kapicioglu Abdullah Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. , 2023, ss.161 - 176. 10.55546/jmm.1211398
AMA Kapicioglu A Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. . 2023; 161 - 176. 10.55546/jmm.1211398
Vancouver Kapicioglu A Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. . 2023; 161 - 176. 10.55546/jmm.1211398
IEEE Kapicioglu A "Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi." , ss.161 - 176, 2023. 10.55546/jmm.1211398
ISNAD Kapicioglu, Abdullah. "Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi". (2023), 161-176. https://doi.org/10.55546/jmm.1211398
APA Kapicioglu A (2023). Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. Journal of Materials and Mechatronics:A (Online), 4(1), 161 - 176. 10.55546/jmm.1211398
Chicago Kapicioglu Abdullah Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. Journal of Materials and Mechatronics:A (Online) 4, no.1 (2023): 161 - 176. 10.55546/jmm.1211398
MLA Kapicioglu Abdullah Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. Journal of Materials and Mechatronics:A (Online), vol.4, no.1, 2023, ss.161 - 176. 10.55546/jmm.1211398
AMA Kapicioglu A Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. Journal of Materials and Mechatronics:A (Online). 2023; 4(1): 161 - 176. 10.55546/jmm.1211398
Vancouver Kapicioglu A Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi. Journal of Materials and Mechatronics:A (Online). 2023; 4(1): 161 - 176. 10.55546/jmm.1211398
IEEE Kapicioglu A "Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi." Journal of Materials and Mechatronics:A (Online), 4, ss.161 - 176, 2023. 10.55546/jmm.1211398
ISNAD Kapicioglu, Abdullah. "Alan ısıtma uygulamalarında toprak kaynaklı ısı pompasının doğalgaz sistemine alternatif olarak değerlendirilebilmesi için optimum teşvik miktarının belirlenmesi". Journal of Materials and Mechatronics:A (Online) 4/1 (2023), 161-176. https://doi.org/10.55546/jmm.1211398