Yıl: 2023 Cilt: 29 Sayı: 2 Sayfa Aralığı: 37 - 40 Metin Dili: İngilizce DOI: 10.4274/ArchEpilepsy.2023.231289 İndeks Tarihi: 02-07-2023

The S100B Protein in Epilepsy

Öz:
Epilepsy is a chronic disease caused by an increased excitability of nerve cells in the brain, characterized by two or more unprovoked seizures, which can be attributed to genetic or acquired causes. There are currently more than 50 million people worldwide who have epilepsy, and this number is continuously increasing. Although significant advancements have been made regarding the diagnosis and treatment of epilepsy in recent years, our knowledge about the cellular and molecular mechanisms underlying the development of epilepsy or epileptogenesis is still insufficient. The absence of a specific biomarker for diagnosis makes epilepsy relatively challenging to diagnose. Therefore, the discovery and implementation of specific markers are important for the diagnosis and early treatment of epilepsy. The S100 protein family is a group of low molecularweight proteins that are localized in the cytoplasm and/or nucleus of various cells. These proteins play a regulatory role in various intracellular processes, including the cell cycle, by localizing within the cytoplasm and nucleus of the cell. S100B is a member of the S100 family. Its functions are highly concentration-dependent, at physiological concentrations, it exhibits a neuroprotective function, supporting neural survival and stimulating dendrites and axons. However, at high concentrations, it induces neuronal apoptosis, activates pro-inflammatory cytokines, and stress-induced inflammatory enzymes. When brain cells are damaged or destroyed, S100B proteins are released from the cells and can be detected in the blood. S100B can be considered as a prognostic biomarker that can be used for diagnosing epilepsy in clinical practice. This review summarizes the role of the S100B protein in epilepsy.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Pitkänen A, Engel J Jr. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11(2):231-241. [CrossRef]
  • 2. WHO. Epilepsy fact sheet. Available from: https://www.who.int/news- room/fact-sheets/detail/epilepsy (accessed April 28, 2023). [CrossRef]
  • 3. Badawy RA, Harvey AS, Macdonell RA. Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy - part 1. J Clin Neurosci. 2009;16(3):355-365. [CrossRef]
  • 4. Pitkänen A, Löscher W, Vezzani A, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15(8):843-856. [CrossRef]
  • 5. Liang KG, Mu RZ, Liu Y, Jiang D, Jia TT, Huang YJ. Increased Serum S100B Levels in Patients With Epilepsy: A Systematic Review and Meta- Analysis Study. Front Neurosci. 2019;13:456. [CrossRef]
  • 6. Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Structure. 1998;6(2):233-241. [CrossRef]
  • 7. Réty S, Osterloh D, Arié JP, et al. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure. 2000;8(2):175-184. [CrossRef]
  • 8. Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta . 1999;1450(3):191-231. [CrossRef]
  • 9. Sorci G, Bianchi R, Giambanco I, Rambotti MG, Donato R. Replicating myoblasts and fused myotubes express the calcium-regulated proteins S100A1 and S100B. Cell Calcium. 1999;25(2):93-106. [CrossRef]
  • 10. Foerch C, Otto B, Singer OC, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke. 2004;35(9):2160-2164. [CrossRef]
  • 11. Heizmann CW, Fritz G, Schäfer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:1356-1368. [CrossRef]
  • 12. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60(6):540-551. [CrossRef]
  • 13. Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury. Childs Nerv Syst. 2010;26(2):205-213. [CrossRef]
  • 14. Kızıltaş M. Lityum-pilokarpin ile indüklenmiş status epileptikus sonucu sıçan hipokampusunda oluşan mikroglia aktivasyonunun serum s100b düzeyi ile ilişkisi ve bir GLP-1 analoğu olan liraglutidin bu değişiklikler üzerine etkisi Gazi Üniversitesi, Tıp Fakültesi, Ankara; 2015.
  • 15. Gattaz WF, Lara DR, Elkis H, et al. Decreased S100-beta protein in schizophrenia: preliminary evidence. Schizophr Res. 2000;43(2-3):91-95. [CrossRef]
  • 16. Uncu A. Akut iskemik inme ile geçici iskemik atak tanılı hastalarda S-100B protein düzeyleri ve risk faktörleri ile ilişkisi. Ege Üniversitesi Tıp Fakültesi Uzmanlık tezi. İstanbul; 2009. [CrossRef]
  • 17. Donato R, Sorci G, Riuzzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008-1022. [CrossRef]
  • 18. Davey GE, Murmann P, Heizmann CW. Intracellular Ca2+ and Zn2+ levels regulate the alternative cell density-dependent secretion of S100B in human glioblastoma cells. J Biol Chem. 2001;276(33):30819-30826. [CrossRef]
  • 19. Leclerc E, Sturchler E, Vetter SW. The S100B/RAGE Axis in Alzheimer’s Disease. Cardiovasc Psychiatry Neurol. 2010;2010:539581. [CrossRef]
  • 20. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97(7):889-901. [CrossRef]
  • 21. Koppal T, Lam AG, Guo L, Van Eldik LJ. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int. 2001;39(5-6):401-407. [CrossRef]
  • 22. Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ. Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci U S A. 1991;88(9):3554-3558. [CrossRef]
  • 23. Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74(1):143-150. [CrossRef]
  • 24. Mariggió MA, Fulle S, Calissano P, Nicoletti I, Fanó G. The brain protein S-100ab induces apoptosis in PC12 cells. Neuroscience. 1994;60(1):29-35. [CrossRef]
  • 25. Fulle S, Pietrangelo T, Mariggiò MA, et al. Calcium and fos involvement in brain-derived Ca(2+)-binding protein (S100)-dependent apoptosis in rat phaeochromocytoma cells. Exp Physiol. 2000;85(3):243-253. [CrossRef]
  • 26. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275(51):40096-40105. [CrossRef]
  • 27. Gonzalez-Martinez T, Perez-Piñera P, Díaz-Esnal B, Vega JA. S-100 proteins in the human peripheral nervous system. Microsc Res Tech. 2003;60(6):633-638. [CrossRef]
  • 28. Elting JW, de Jager AE, Teelken AW, et al. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci. 2000;181(1-2):104-110. [CrossRef]
  • 29. Zimmer DB, Chaplin J, Baldwin A, Rast M. S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand). 2005;51(2):201-214. [CrossRef]
  • 30. Lu C, Li J, Sun W, et al. Elevated plasma S100B concentration is associated with mesial temporal lobe epilepsy in Han Chinese: a case-control study. Neurosci Lett. 2010;484(2):139-142. [CrossRef]
  • 31. Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC. Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res. 2002;106(1-2):22-29. [CrossRef]
  • 32. Griffin WS, Yeralan O, Sheng JG, et al. Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy. J Neurochem. 1995;65(1):228-233. [CrossRef]
  • 33. Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand. 2022;146(4):362-368. [CrossRef]
  • 34. Khamis M, Din NSE, Nada MA. et al. Serum protein S-100B as a novel biomarker of diagnosis and prognosis of childhood epilepsy. Egypt J Neurol Psychiatry Neurosurg. 2023;59:19. [CrossRef]
  • 35. Maiti R, Mishra BR, Jena M, et al. Effect of anti-seizure drugs on serum S100B in patients with focal seizure: a randomized controlled trial. J Neurol. 2018;265(11):2594-2601. [CrossRef]
  • 36. Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-analysis. ACS Chem Neurosci. 2020;11(24):4048-4059. [CrossRef]
  • 37. de Oliveira DL, Fischer A, Jorge RS, et al. Effects of early-life LiCl- pilocarpine-induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein. Epilepsia. 2008;49(5):842-852. [CrossRef]
  • 38. Yetkin İ, Shermatova K, Abuhandan M, Demir M, Aksoy N. Evaluation of serum S-100B protein levels in patients with simple febrile convulsions. J Pediatr Neurol. 2016;14(3):102-104. [CrossRef]
  • 39. Palmio J, Peltola J, Vuorinen P, Laine S, Suhonen J, Keränen T. Normal CSF neuron-specific enolase and S-100 protein levels in patients with recent non-complicated tonic-clonic seizures. J Neurol Sci. 2001;183(1):27-31. [CrossRef]
  • 40. Sarı Doğan F, Denizbaşı A, Onur ÖE, Güneysel O, Akoğlu H. S100B protein levels in patients admitted to an emergency service due to seizures. Marmara Med J. 2013;26:90-93. [CrossRef]
  • 41. Hamed SA, Eltayeb AA, Mohamad HO, Moussa EMM. Brain function in children with untreated epilepsy: relationship to biomarkers of brain damage. J Pediatr Epilepsy. 2013;2(2):115-124. [CrossRef]
  • 42. Atici Y, Alehan F, Sezer T, et al. Serum S100B levels in children with simple febrile seizures. Seizure. 2012;21(3):175-177. [CrossRef]
  • 43. VezzaniA, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459-472. [CrossRef]
  • 44. Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20(2):131-147. [CrossRef]
APA SEÇEN A, akçalı d, Kurt G (2023). The S100B Protein in Epilepsy. , 37 - 40. 10.4274/ArchEpilepsy.2023.231289
Chicago SEÇEN AHMET EREN,akçalı didem,Kurt Gokhan The S100B Protein in Epilepsy. (2023): 37 - 40. 10.4274/ArchEpilepsy.2023.231289
MLA SEÇEN AHMET EREN,akçalı didem,Kurt Gokhan The S100B Protein in Epilepsy. , 2023, ss.37 - 40. 10.4274/ArchEpilepsy.2023.231289
AMA SEÇEN A,akçalı d,Kurt G The S100B Protein in Epilepsy. . 2023; 37 - 40. 10.4274/ArchEpilepsy.2023.231289
Vancouver SEÇEN A,akçalı d,Kurt G The S100B Protein in Epilepsy. . 2023; 37 - 40. 10.4274/ArchEpilepsy.2023.231289
IEEE SEÇEN A,akçalı d,Kurt G "The S100B Protein in Epilepsy." , ss.37 - 40, 2023. 10.4274/ArchEpilepsy.2023.231289
ISNAD SEÇEN, AHMET EREN vd. "The S100B Protein in Epilepsy". (2023), 37-40. https://doi.org/10.4274/ArchEpilepsy.2023.231289
APA SEÇEN A, akçalı d, Kurt G (2023). The S100B Protein in Epilepsy. Archives of epilepsy (Online), 29(2), 37 - 40. 10.4274/ArchEpilepsy.2023.231289
Chicago SEÇEN AHMET EREN,akçalı didem,Kurt Gokhan The S100B Protein in Epilepsy. Archives of epilepsy (Online) 29, no.2 (2023): 37 - 40. 10.4274/ArchEpilepsy.2023.231289
MLA SEÇEN AHMET EREN,akçalı didem,Kurt Gokhan The S100B Protein in Epilepsy. Archives of epilepsy (Online), vol.29, no.2, 2023, ss.37 - 40. 10.4274/ArchEpilepsy.2023.231289
AMA SEÇEN A,akçalı d,Kurt G The S100B Protein in Epilepsy. Archives of epilepsy (Online). 2023; 29(2): 37 - 40. 10.4274/ArchEpilepsy.2023.231289
Vancouver SEÇEN A,akçalı d,Kurt G The S100B Protein in Epilepsy. Archives of epilepsy (Online). 2023; 29(2): 37 - 40. 10.4274/ArchEpilepsy.2023.231289
IEEE SEÇEN A,akçalı d,Kurt G "The S100B Protein in Epilepsy." Archives of epilepsy (Online), 29, ss.37 - 40, 2023. 10.4274/ArchEpilepsy.2023.231289
ISNAD SEÇEN, AHMET EREN vd. "The S100B Protein in Epilepsy". Archives of epilepsy (Online) 29/2 (2023), 37-40. https://doi.org/10.4274/ArchEpilepsy.2023.231289