Yıl: 2023 Cilt: 10 Sayı: 2 Sayfa Aralığı: 166 - 175 Metin Dili: İngilizce DOI: 10.54287/gujsa.1256330 İndeks Tarihi: 03-07-2023

Asphaltite Pyrolysis in Fluidized Bed Reactor

Öz:
In this study, the pyrolysis properties of asphaltite samples taken from Şırnak and Hakkari regions in a fluidized bed reactor under catalyst and non-catalyst conditions were determined by rapid and batch pyrolysis. Basic analysis, FTIR and XRF analyses were performed for the raw material. GC-MS analysis methods were used for liquid pyrolysis products and FTIR were used for solids. In order to acquire the condition of the highest liquid product yield in pyrolysis, several effective variables such as particle diameter, vacuum, nitrogen flow rate, temperature, raw material feed rate, catalyst type, raw material type and duration were experimented and the results were evaluated. In general, the vacuum effect has led to an increase in liquid product yield and a decrease in gas product yield. Liquid product yield increased at 700°C pyrolysis temperature in continuous feed system and 550 - 650°C in batch system. In the pyrolysis studies carried out, a maximum liquid product yield of 16.5% was achieved in the continuous fed reactor at 700°C temperature, 400 mmHg vacuum, 2 g/min feed rate and 500 µm particle size.
Anahtar Kelime: Asphaltite Pyrolysis Fluid Bed Liquid Fuel

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bilgin, O. (2021). Investigation of the cleanability of asphaltite by flotation. Chemical Physics Letters, 776, 138710. doi:10.1016/j.cplett.2021.138710
  • Demirci, S., Sivrikaya, O., & Vapur, H. (2019). Enerji Kaynağı Olarak Asfaltit: Oluşumu, İçeriği, Türkiye Rezervleri, Temizlenmesi [Asphaltite as Energy Source; Formation, Content, Turkey Reserves, Cleaning]. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 312-325. doi:10.28948/ngumuh.517131
  • Gao, W., Zhang, M., & Wu, H. (2022). Bed agglomeration during fast pyrolysis of bio-oil derived fuels in a fluidized-bed reactor. Fuel, 328, 125359. doi:10.1016/j.fuel.2022.125359
  • Hamamci, C., Kahraman, F., & Düz, M. Z. (1997). Desulfurization of southeastern Anatolian asphaltites by the Meyers method. Fuel Processing Technology, 50(2-3), 171-177. doi:10.1016/s0378-3820(96)01077-6
  • Hameed, S., Sharma, A., & Pareek, V. (2023). A Distributed Activation Energy Model for Cellulose Pyrolysis in a Fluidized Bed Reactor. Chemical Engineering Research and Design, 191, 414-425. doi:10.1016/j.cherd.2023.01.048
  • Kosan, İ., Ustunisik, G., Önal, M., Sarıkaya, Y., & Bozkurt, P. A. (2021). Irreversible ammonia adsorption on asphaltite bottom ash: A thermodynamic approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126933. doi:10.1016/j.colsurfa.2021.126933
  • Li, B., Song, M., Xie, X., Wei, J., Xu, D., Ding, K., Huang, Y., Zhang, S., Hu, X., Zhang, S., & Liu, D. (2023). Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio. Energy, 270, 126987. doi:10.1016/j.energy.2023.126987
  • Sert, M., Ballice, L., Yüksel, M., & Sağlam, M. (2011). Effect of mineral matter on the isothermal pyrolysis product of Şırnak asphaltite (Turkey). Fuel, 90(8), 2767-2772. doi:10.1016/j.fuel.2011.04.007
  • Sezer, M., Bilgesü, A. Y., & Karaduman, A. (2008). Flash pyrolysis of Silopi asphaltite in a free-fall reactor under vacuum. Journal of Analytical and Applied Pyrolysis, 82(1), 89-95. doi:10.1016/j.jaap.2008.01.003
  • Taskesen, E., Acar, Ş., Arlı, F., Dumrul, H., Ertuğrul, G., Bülbül, Ş., & Özcan, E. (2022). Şırnak-Uludere Bölgesinde Yaygın Olarak Bulunan Asfaltitlerden Doğal Hümik Asit Elde Edilebilirliğinin İncelenmesi [Investigation of the ability to obtain natural humic acid from asphaltites widely found in Şırnak-Uludere region]. Politeknik Dergisi, 25(2), 691-697. doi:10.2339/politeknik.766461
APA Moghanırahımı S, Topal H (2023). Asphaltite Pyrolysis in Fluidized Bed Reactor. , 166 - 175. 10.54287/gujsa.1256330
Chicago Moghanırahımı Samad,Topal Huseyin Asphaltite Pyrolysis in Fluidized Bed Reactor. (2023): 166 - 175. 10.54287/gujsa.1256330
MLA Moghanırahımı Samad,Topal Huseyin Asphaltite Pyrolysis in Fluidized Bed Reactor. , 2023, ss.166 - 175. 10.54287/gujsa.1256330
AMA Moghanırahımı S,Topal H Asphaltite Pyrolysis in Fluidized Bed Reactor. . 2023; 166 - 175. 10.54287/gujsa.1256330
Vancouver Moghanırahımı S,Topal H Asphaltite Pyrolysis in Fluidized Bed Reactor. . 2023; 166 - 175. 10.54287/gujsa.1256330
IEEE Moghanırahımı S,Topal H "Asphaltite Pyrolysis in Fluidized Bed Reactor." , ss.166 - 175, 2023. 10.54287/gujsa.1256330
ISNAD Moghanırahımı, Samad - Topal, Huseyin. "Asphaltite Pyrolysis in Fluidized Bed Reactor". (2023), 166-175. https://doi.org/10.54287/gujsa.1256330
APA Moghanırahımı S, Topal H (2023). Asphaltite Pyrolysis in Fluidized Bed Reactor. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 166 - 175. 10.54287/gujsa.1256330
Chicago Moghanırahımı Samad,Topal Huseyin Asphaltite Pyrolysis in Fluidized Bed Reactor. Gazi University Journal of Science Part A: Engineering and Innovation 10, no.2 (2023): 166 - 175. 10.54287/gujsa.1256330
MLA Moghanırahımı Samad,Topal Huseyin Asphaltite Pyrolysis in Fluidized Bed Reactor. Gazi University Journal of Science Part A: Engineering and Innovation, vol.10, no.2, 2023, ss.166 - 175. 10.54287/gujsa.1256330
AMA Moghanırahımı S,Topal H Asphaltite Pyrolysis in Fluidized Bed Reactor. Gazi University Journal of Science Part A: Engineering and Innovation. 2023; 10(2): 166 - 175. 10.54287/gujsa.1256330
Vancouver Moghanırahımı S,Topal H Asphaltite Pyrolysis in Fluidized Bed Reactor. Gazi University Journal of Science Part A: Engineering and Innovation. 2023; 10(2): 166 - 175. 10.54287/gujsa.1256330
IEEE Moghanırahımı S,Topal H "Asphaltite Pyrolysis in Fluidized Bed Reactor." Gazi University Journal of Science Part A: Engineering and Innovation, 10, ss.166 - 175, 2023. 10.54287/gujsa.1256330
ISNAD Moghanırahımı, Samad - Topal, Huseyin. "Asphaltite Pyrolysis in Fluidized Bed Reactor". Gazi University Journal of Science Part A: Engineering and Innovation 10/2 (2023), 166-175. https://doi.org/10.54287/gujsa.1256330