Yıl: 2023 Cilt: 57 Sayı: 2 Sayfa Aralığı: 68 - 74 Metin Dili: İngilizce DOI: 10.26650/eor.2023984422 İndeks Tarihi: 04-07-2023

The effects of technical factors on the fractal dimension in different dental radiographic images

Öz:
The aim of this study was to assess the impact of exposure parameters and image formats on fractal dimension (FD) values in periapical, panoramic, and CBCT images. Materials and Methods Seven dry male mandibles were selected, and a Gutta-Percha was used to identify identical regions of interest. A periapical radiograph was taken with 60 kVp/7 mA and exported in DICOM, JPEG, TIFF, and PNG formats. Nine periapical radiographs (60, 65, 70 kVp; 4, 5, 6 mA) were taken from seven dry human mandibles. Additionally, 12 panoramic radiographs (60, 70, 81, 90 kVp; 5, 8, 13 mA) and 10 CBCT images (with different scanning options and FOVs) were taken from each mandible. FDs were measured from a standard area. Results The intra-class correlation coefficient demonstrated a high degree of agreement between observers. No significant difference was found between TIFF and PNG formats (p > 0.05). The highest FD mean was found in TIFF format, while the lowest FD mean was found in JPEG format (p < 0.001). There was no significant difference between kVp and mA settings in periapical images. In panoramic images, a significant difference was found at 90 kVp (p = 0.001) and 13 mA (p < 0.001), with lower FD values observed at these settings. There was no significant difference between FOV and resolution in CBCT images (p > 0.05). Conclusion The format of the image can influence FD. For periapical and panoramic radiographs, kVp and mA settings do not have a significant impact on FD. However, fractal analysis may not be an ideal method for evaluating three-dimensional images, such as those obtained with CBCT.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Güngör E, Yildirim D, Çevik R. Evaluation of osteoporosis in jaw bones using cone beam CT and dual-energy X-ray absorptiometry. Journal of oral science 2016;58:185-94. [CrossRef ]
  • 2. Tolga Suer B, Yaman Z, Buyuksarac B. Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Implant Recipient Sites. International Journal of Oral & Maxillofacial Implants 2016;31. [CrossRef ]
  • 3. Geraets W, Van Der Stelt P. Fractal properties of bone. Dentomaxillofacial Radiology 2000;29:144-53. [CrossRef ]
  • 4. Kato CN, Barra SG, Tavares NP, Amaral TM, Brasileiro CB, Mesquita RA, et al. Use of fractal analysis in dental images: a systematic review. Dentomaxillofacial Radiology 2020;49:20180457. [CrossRef ]
  • 5. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1999;88:628-35. [CrossRef ]
  • 6. Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. Journal of oral science 2012;54:227-32. [CrossRef ]
  • 7. Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. The effect of scan parameters on cone beam CT trabecular bone microstructural measurements of the human mandible. Dentomaxillofacial Radiology 2013;42:20130206. [CrossRef ]
  • 8. Jolley L, Majumdar S, Kapila S. Technical factors in fractal analysis of periapical radiographs. Dentomaxillofacial Radiology 2006;35:393-7. [CrossRef ]
  • 9. Wilding R, Slabbert J, Kathree H, Owen C, Crombie K, Delport P. The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants. Archives of Oral Biology 1995;40:61-72. [CrossRef ]
  • 10. Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. Journal of periodontology 1998;69:9-13. [CrossRef ]
  • 11. Shrout M, Hildebolt C, Potter B. The effect of varying the region of interest on calculations of fractal index. Dentomaxillofacial Radiology 1997;26:295-8. [CrossRef ]
  • 12. Baksi BG, Fidler A. Image resolution and exposure time of digital radiographs affects fractal dimension of periapical bone. Clinical oral investigations 2012;16:1507-10. [CrossRef ]
  • 13. Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofacial Radiology 2015;44:20150078. [CrossRef ]
  • 14. Varma DR. Managing DICOM images: Tips and tricks for the radiologist. The Indian journal of radiology & imaging 2012;22:4. [CrossRef ]
  • 15. Tan LK. Image file formats. Biomed Imaging Interv J 2006;2:e6. [CrossRef ]
  • 16. Viswanathan GK, Lotus R. Comparison and analysis of Image File Formats.
  • 17. Toghyani S, Nasseh I, Aoun G, Noujeim M. Effect of image resolution and compression on fractal analysis of the periapical bone. Acta Informatica Medica 2019;27:167. [CrossRef ]
  • 18. Baksi BG, Fidler A. Fractal analysis of periapical bone from lossy compressed radiographs: a comparison of two lossy compression methods. Journal of digital imaging 2011;24:993- 8. [CrossRef ]
  • 19. Shrout MK, Potter BJ, Hildebolt CF. The effect of image variations on fractal dimension calculations. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1997;84:96- 100. [CrossRef ]
  • 20. Yasar F, Apaydın B, Yılmaz H-H. The effects of image compression on quantitative measurements of digital panoramic radiographs. Medicina oral, patologia oral y cirugia bucal 2012;17:e1074. [CrossRef ]
  • 21. Veenland J, Grashuis J, Gelsema E. Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Medical Physics 1998;25:922-36. [CrossRef ]
  • 22. Attaelmanan AG, Borg E, Gröndahl H-G. Signal-to-noise ratios of 6 intraoral digital sensors. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2001;91:611-5. [CrossRef ]
  • 23. Kocasarac HD, Kursun-Cakmak ES, Ustaoglu G, Bayrak S, Orhan K, Noujeim M. Assessment of signal-to-noise ratio and contrast-tonoise ratio in 3 T magnetic resonance imaging in the presence of zirconium, titanium, and titanium-zirconium alloy implants. Oral surgery, oral medicine, oral pathology and oral radiology 2020;129:80-6. [CrossRef ]
  • 24. Bollen A, Taguchi A, Hujoel P, Hollender L. Fractal dimension on dental radiographs. Dentomaxillofacial Radiology 2001;30:270- 5. [CrossRef ]
  • 25. Tsai M-T, He R-T, Huang H-L, Tu M-G, Hsu J-T. Effect of Scanning Resolution on the Prediction of Trabecular Bone Microarchitectures Using Dental Cone Beam Computed Tomography. Diagnostics 2020;10:368. [CrossRef ]
  • 26. dos Santos Corpas L, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri implant bone tissue assessment by comparing the outcome of intra oral radiograph and cone beam computed tomography analyses to the histological standard. Clinical oral implants research 2011;22:492-9. [CrossRef ]
  • 27. Parsa A, Ibrahim N, Hassan B, Motroni A, Van der Stelt P, Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofacial Radiology 2013;42:79884780. [CrossRef ]
  • 28. Neves FS, Freitas DQ, Campos PSF, Ekestubbe A, Lofthag- Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. Journal of endodontics 2014;40:1530-6. [CrossRef ]
  • 29. Schulze R, Heil U, Groβ D, Bruellmann D, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofacial Radiology 2011;40:265-73. [CrossRef ]
  • 30. Schulze R. Spatial resolution in CBCT machines for dental/ maxillofacial applications—what do we know today? 2015.
  • 31. Flaherty T, Tamaddon M, Liu C. Micro-Computed Tomography Analysis of Subchondral Bone Regeneration Using Osteochondral Scaffolds in an Ovine Condyle Model. Applied Sciences 2021;11:891. [CrossRef ]
  • 32. Min C-K, Kim K-A. Quantitative analysis of metal artefacts of dental implant in CBCT image by correlation analysis to micro- CT: A microstructural study. Dentomaxillofacial Radiology 2021;50:20200365. [CrossRef ]
  • 33. Kang H-J, Jeong S-W, Jo B-H, Kim Y-D, Kim SS. Observation of trabecular changes of the mandible after orthognathic surgery using fractal analysis. Journal of the Korean Association of Oral and Maxillofacial Surgeons 2012;38:96-100. [CrossRef ]
  • 34. Bezerra dos Santos LC, Tavares Carvalho AdA, Carneiro Leão J, Duarte Neto PJ, Stosic T, Stosic B. Fractal Measure and Microscopic Modeling of Osseointegration. International Journal of Periodontics & Restorative Dentistry 2015;35. [CrossRef ]
APA AMUK M, Şirin Sarıbal G, ersu n, YILMAZ S (2023). The effects of technical factors on the fractal dimension in different dental radiographic images. , 68 - 74. 10.26650/eor.2023984422
Chicago AMUK MEHMET,Şirin Sarıbal Gamze,ersu nihal,YILMAZ SERKAN The effects of technical factors on the fractal dimension in different dental radiographic images. (2023): 68 - 74. 10.26650/eor.2023984422
MLA AMUK MEHMET,Şirin Sarıbal Gamze,ersu nihal,YILMAZ SERKAN The effects of technical factors on the fractal dimension in different dental radiographic images. , 2023, ss.68 - 74. 10.26650/eor.2023984422
AMA AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S The effects of technical factors on the fractal dimension in different dental radiographic images. . 2023; 68 - 74. 10.26650/eor.2023984422
Vancouver AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S The effects of technical factors on the fractal dimension in different dental radiographic images. . 2023; 68 - 74. 10.26650/eor.2023984422
IEEE AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S "The effects of technical factors on the fractal dimension in different dental radiographic images." , ss.68 - 74, 2023. 10.26650/eor.2023984422
ISNAD AMUK, MEHMET vd. "The effects of technical factors on the fractal dimension in different dental radiographic images". (2023), 68-74. https://doi.org/10.26650/eor.2023984422
APA AMUK M, Şirin Sarıbal G, ersu n, YILMAZ S (2023). The effects of technical factors on the fractal dimension in different dental radiographic images. European oral research (Online), 57(2), 68 - 74. 10.26650/eor.2023984422
Chicago AMUK MEHMET,Şirin Sarıbal Gamze,ersu nihal,YILMAZ SERKAN The effects of technical factors on the fractal dimension in different dental radiographic images. European oral research (Online) 57, no.2 (2023): 68 - 74. 10.26650/eor.2023984422
MLA AMUK MEHMET,Şirin Sarıbal Gamze,ersu nihal,YILMAZ SERKAN The effects of technical factors on the fractal dimension in different dental radiographic images. European oral research (Online), vol.57, no.2, 2023, ss.68 - 74. 10.26650/eor.2023984422
AMA AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S The effects of technical factors on the fractal dimension in different dental radiographic images. European oral research (Online). 2023; 57(2): 68 - 74. 10.26650/eor.2023984422
Vancouver AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S The effects of technical factors on the fractal dimension in different dental radiographic images. European oral research (Online). 2023; 57(2): 68 - 74. 10.26650/eor.2023984422
IEEE AMUK M,Şirin Sarıbal G,ersu n,YILMAZ S "The effects of technical factors on the fractal dimension in different dental radiographic images." European oral research (Online), 57, ss.68 - 74, 2023. 10.26650/eor.2023984422
ISNAD AMUK, MEHMET vd. "The effects of technical factors on the fractal dimension in different dental radiographic images". European oral research (Online) 57/2 (2023), 68-74. https://doi.org/10.26650/eor.2023984422