Yıl: 2023 Cilt: 9 Sayı: 1 Sayfa Aralığı: 1 - 6 Metin Dili: İngilizce DOI: 10.22531/muglajsci.1183505 İndeks Tarihi: 10-07-2023

USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS

Öz:
In order to reduce cement consumption, which is one of the significant factors in man-made carbon dioxide emissions, studies are being conducted on issues such as alternative building materials. Replacing cement with fly ash is at the forefront of cement reduction studies. However, the use of fly ash with a high sulfate content in structural elements is limited by European and American standards. Here the production of pumice stones used as wall material is discussed. Pumice blocks were made by replacing the cement in pumice blocks with high sulfate fly ash. High sulfate fly ash increased the late strength of pumice blocks by about 13%. In addition, as a result of a brief economic analysis for Türkiye, it turned out that wall costs could be reduced by up to 8% thanks to the replacement of fly ash. The mechanical and physical tests performed on the blocks produced concluded that the cement could be replaced with fly ash with a high sulfate content of up to 30%.
Anahtar Kelime: High sulfate fly ash Pumice block Pumice concrete Sustainable building materials

BIMS BLOKLARDA YÜKSEK SÜLFATLI UÇUCU KÜL KULLANIMI

Öz:
İnsan kaynaklı karbondioksit emisyonlarının ana aktörlerinden biri olan çimento tüketimini azaltmak için alternatif yapı malzemeleri gibi konularda çalışmalar yapılmaktadır. Çimentonun uçucu kül ile ikamesi, çimento azaltım çalışmalarının ön saflarında yer almaktadır. Ancak yüksek oranda sülfat içeren uçucu külün yapı elemanlarında kullanımı Avrupa ve Amerika standartları tarafından sınırlandırılmıştır. Burada duvar malzemesi olarak kullanılan bims blok üretimi ele alınmıştır. Bims bloklarındaki çimentonun yüksek sülfat içeren uçucu kül ile değiştirilmesiyle bims bloklar üretilmiştir. Yüksek sülfatlı uçucu kül, bims blokların geç dayanımlarının yaklaşık %13 artmasına neden olmuştur. Ayrıca Türkiye için kısa bir ekonomik analiz sonucunda uçucu kül ikamesi sayesinde duvar maliyetinin %8'e varan oranlarda azaltılabileceği görülmüştür. Üretilen bloklar üzerinde yapılan mekanik ve fiziksel testler ile çimentonun %30'a kadar yüksek sülfatlı uçucu kül ile değiştirilebileceği sonucuna varılmıştır.
Anahtar Kelime: Yüksek sülfatlı uçucu kül Bims blok Bims beton Sürdürülebilir yapı malzemeleri

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Benhelal, E., Zahedi, G., and Hashim, H, “A novel design for green and economical cement manufacturing”, Journal of Cleaner Production, 22(1), 60–66, 2012.
  • [2] Kajaste, R., and Hurme, M., “Cement industry greenhouse gas emissions - Management options and abatement cost”, Journal of Cleaner Production, 112, 4041–4052, 2016.
  • [3] Abbas, A., Fathifazl, G., Isgor, O. B., Razaqpur, A. G., Fournier, B., and Foo, S, “Environmental benefits of green concrete”, 2006 IEEE EIC Climate Change Technology Conference, 2006.
  • [4] Andrew, R. M., “Global CO2 emissions from cement production”, Earth System Science Data, 10(1), 195– 217, 2018.
  • [5] Black, L., “Low clinker cement as a sustainable construction material”, Sustainability of Construction Materials, 415–457, 2016.
  • [6] Cruz Juarez, R. I., and Finnegan, S, “The environmental impact of cement production in Europe: A holistic review of existing EPDs”, Cleaner Environmental Systems, 3, 100053, 2021.
  • [7] Aydin, S., and Baradan, B., “Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars”, Cement and Concrete Research, 37(6), 988–995, 2007.
  • [8] Sayı, Ö., Demir, İ., Serhat Başpınar, M., Görhan, G., and Kahraman, E., “Seyitömer Uçucu Külünün Yapı Tuğlası Üretiminde Kullanılabilirliğinin Ön Araştırması” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 9(3), 131–137, 2009.
  • [9] Goswami, A. P., “Fly Ash Selection and Mix Proportioning for Ambient Cured High Strength In- situ Cast Mono Component Geopolymer Concrete”, International Journal of Sustainable Construction Engineering and Technology, 12(4), 57–72, 2021.
  • [10] Hamid, M. A., Yaltay, N., and Türkmenoğlu, M., “Properties of pumice-fly ash based geopolymer paste”, Construction and Building Materials, 316, 125665, 2022.
  • [11] Top, S., Vapur, H., Altiner, M., Kaya, D., and Ekicibil, A., “Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates”, Journal of Molecular Structure, 1202, 127236, 2020.
  • [12] Zachar, J., Claisse, P., Naik, T. R., and Ganjian, E., “Geopolymer Concrete with Fly Ash”, Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, 1493– 1504, 2010.
  • [13] Folagbade, S. O., “Initial Surface Absorption of Cement Combination Concretes Containing Portland Cement, Fly Ash, Silica Fume and Metakaolin”, International Journal of Sustainable Construction Engineering and Technology, 8(2 SE-Articles), 46–56, 2017.
  • [14] Halstead, W. J., “Use of Fly Ash in Concrete”, NCHRP Synthesis of Highway Practice, 127, 1986.
  • [15] Malhotra, V. M., “High-Performance High-Volume Fly Ash Concrete”, Concrete International, 24(7), 30–34, 2002.
  • [16] Nadesan, M. S., and Dinakar, P., “Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete”, Case Studies in Construction Materials, 7, 336–347, 2017.
  • [17] Yasar, E., Atis, C. D., Kilic, A., and Gulsen, H., “Strength properties of lightweight concrete made with basaltic pumice and fly ash”, Materials Letters, 57(15), 2267–2270, 2003.
  • [18] Khatib, J. M., “Performance of self-compacting concrete containing fly ash”, Construction and Building Materials, 22(9), 1963–1971, 2008.
  • [19] Siddique, R., “Properties of self-compacting concrete containing class F fly ash”, Materials & Design, 32(3), 1501–1507, 2011.
  • [20] Shoaib, M. M., Ahmed, S. A., and Balaha, M. M., “Effect of fire and cooling mode on the properties of slag mortars”, Cement and Concrete Research, 31(11), 1533–1538, 2001.
  • [21] Widodo, S., Satyarno, I., & Tudjono, S., “Experimental Study on the Potential Use of Pumice Breccia as Coarse Aggregate in Structural Lightweight Concrete”, International Journal of Sustainable Construction Engineering and Technology, 5(1 SE- Articles), 1–8, 2014.
  • [22] Hasan, A., “Optimizing insulation thickness for buildings using life cycle cost”, Applied Energy, 63(2), 115–124, 1999.
  • [23] Anwar Hossain, K. M., “Properties of volcanic pumice based cement and lightweight concrete”, Cement and Concrete Research, 34(2), 283–291, 2004.
  • [24] Demirel, B., “Optimization of the composite brick composed of expanded polystyrene and pumice blocks”, Construction and Building Materials, 40, 306–313, 2013.
  • [25] Campione, G., Miraglia, N., and Papia, M., “Mechanical properties of steel fibre reinforced lightweight concrete with pumice stone or expanded clay aggregates”, Materials and Structures, 34(4), 201– 210, 2011.
  • [26] TS EN 772-2, “Methods of test for masonry units - Part 2: Determination of percentage area of voids in aggregate concrete masonry units (by paper indentation)”, 2000.
  • [27] TS EN 772-16, “Methods of test for masonry units - Part 16: Determination of dimensions”, 2012.
  • [28] TS EN 772-20, “Determination of flatness of faces of aggregate concrete manufactured stone and natural stone masonry units”, 2002.
  • [29] TS EN 772-13 “Methods of test for masonry units- Part 13: Determination of net and gross dry density of masonry units (except for natural stone)”, 2002.
  • [30] TS EN 772-1+A1 “Methods of test for masonry units - Part 1: Determination of compressive strength”, 2011.
  • [31] Uygunoğlu, T., Topcu, I. B., Gencel, O., and Brostow, W., “The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs)”, Construction and Building Materials, 30, 180–187, 2012.
  • [32] Gencel, O., Brostow, W., Datashvili, T., and Thedford, M., “Workability and Mechanical Performance of Steel Fiber-Reinforced Self-Compacting Concrete with Fly Ash”, Composite Interfaces, 18(2), 169–184, 2012.
  • [33] Pryymachenko, A., and Sheinich, L., “Sulfate resistant concrete with aluminosilicate additives”, Architecture Civil Engineering Environment, 10(4), 101–106, 2017.
  • [34] Sengul, O., Azizi, S., Karaosmanoglu, F., and Tasdemir, M. A., “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete”, Energy and Buildings, 43(2–3), 671–676, 2011.
  • [35] Hwang, K., Noguchi, T., and Tomosawa, F., “Prediction model of compressive strength development of fly-ash concrete”, Cement and Concrete Research, 34(12), 2269–2276, 2004.
  • [36] Nath, P., and Sarker, P., “Effect of Fly Ash on the Durability Properties of High Strength Concrete”, Procedia Engineering, 14, 1149–1156, 2011.
  • [37] Harison, A., Srivastava, V., & Herbert, A., Effect of “Fly Ash on Compressive Strength of Portland Pozzolona Cement Concrete”, Journal of Academia and Industrial Research, 2(8), 476, 2014.
  • [38] Fauzi, A., Nuruddin, M. F., Malkawi, A. B., & Abdullah, M. M. A. B., “Study of Fly Ash Characterization as a Cementitious Material”, Procedia Engineering, 148, 487–493, 2016.
  • [39] Supit, S. W. M., Shaikh, F. U. A., and Sarker, P. K., “Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar”, Construction and Building Materials, 51, 278–286, 2014.
  • [40] Knapik-Jajkeiewicz, K., Gaj, G., Kowalski, A., and Predka, S., “Compressive strength of selected fine graıned soils treated with cement kiln dust and calcareous fly ash”, Architecture Civil Engineering Environment, 13(1), 79–86, 2020.
  • [41] Construction and installation unit prices, 2019. https://www.csb.gov.tr
  • [42] Turkish Statistical Institute. (2019). Building Permit Statistics. www.tuik.gov.tr
APA DENKTAŞ S, TÜRK F, Keskin Ü (2023). USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. , 1 - 6. 10.22531/muglajsci.1183505
Chicago DENKTAŞ SERHAT,TÜRK FURKAN,Keskin Ülkü Sultan USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. (2023): 1 - 6. 10.22531/muglajsci.1183505
MLA DENKTAŞ SERHAT,TÜRK FURKAN,Keskin Ülkü Sultan USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. , 2023, ss.1 - 6. 10.22531/muglajsci.1183505
AMA DENKTAŞ S,TÜRK F,Keskin Ü USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. . 2023; 1 - 6. 10.22531/muglajsci.1183505
Vancouver DENKTAŞ S,TÜRK F,Keskin Ü USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. . 2023; 1 - 6. 10.22531/muglajsci.1183505
IEEE DENKTAŞ S,TÜRK F,Keskin Ü "USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS." , ss.1 - 6, 2023. 10.22531/muglajsci.1183505
ISNAD DENKTAŞ, SERHAT vd. "USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS". (2023), 1-6. https://doi.org/10.22531/muglajsci.1183505
APA DENKTAŞ S, TÜRK F, Keskin Ü (2023). USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. Mugla Journal of Science and Technology, 9(1), 1 - 6. 10.22531/muglajsci.1183505
Chicago DENKTAŞ SERHAT,TÜRK FURKAN,Keskin Ülkü Sultan USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. Mugla Journal of Science and Technology 9, no.1 (2023): 1 - 6. 10.22531/muglajsci.1183505
MLA DENKTAŞ SERHAT,TÜRK FURKAN,Keskin Ülkü Sultan USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. Mugla Journal of Science and Technology, vol.9, no.1, 2023, ss.1 - 6. 10.22531/muglajsci.1183505
AMA DENKTAŞ S,TÜRK F,Keskin Ü USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. Mugla Journal of Science and Technology. 2023; 9(1): 1 - 6. 10.22531/muglajsci.1183505
Vancouver DENKTAŞ S,TÜRK F,Keskin Ü USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS. Mugla Journal of Science and Technology. 2023; 9(1): 1 - 6. 10.22531/muglajsci.1183505
IEEE DENKTAŞ S,TÜRK F,Keskin Ü "USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS." Mugla Journal of Science and Technology, 9, ss.1 - 6, 2023. 10.22531/muglajsci.1183505
ISNAD DENKTAŞ, SERHAT vd. "USE OF HIGH SULFATE FLY ASH IN PUMICE BLOCKS". Mugla Journal of Science and Technology 9/1 (2023), 1-6. https://doi.org/10.22531/muglajsci.1183505