Yıl: 2023 Cilt: 7 Sayı: 2 Sayfa Aralığı: 165 - 173 Metin Dili: İngilizce DOI: 10.14744/ejmo.2023.41377 İndeks Tarihi: 05-07-2023

Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only

Öz:
Objectives: Accumulating evidence has implicated DNA methylation in the development of non-syndromic cleft pal- ate only (NSCPO); however, little is known about the underlying epigenetic mechanism. This study was to elucidate the role of SATB2 5'untranslated region (UTR) promoter methylation in formation of NSCPO. Methods: DNA methylation profiling was performed on discarded human palatal tissue after repair of NSCPO (case) or maxillofacial and palate trauma (control), using an Illumina 850K-EPIC BeadChip methylation array. The SATB2 5'UTR promoter methylation level was confirmed by pyrosequencing. Results: Five CpG sites (cg14273610, cg22334352, cg25103650, cg22845542 and cg06199336) in the SATB2 5'UTR pro- moter was hypermethylated in cases compared with controls (P<0.05). Pyrosequencing revealed a mean methylation rate of 31.81% vs. 16.45% (p=0.0019) at the cg14273610 CpG site, 22.12% vs. 9.28% (p=0.0102) at the cg22334352 CpG site, 24.41% vs. 8.74% (p=0.0003) at the cg25103650 CpG site, 51.66% vs. 23.97%(p=0.0165) at the cg22845542 CpG site and 31.05% vs. 16.43% (p=0.0091) at the cg06199336 CpG site for cases and controls, respectively. The pyrosequencing results were consistent with those from the Illumina 850K-EPIC methylation BeadChip array. Conclusion: Our results suggested that the SATB2 may be responsible for NSCPO formation and could be a potential biomarker for NSCPO.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Mossey PA, Modell B. Epidemiology of Oral Clefts 2012: An In- ternational Perspective Front Oral Biol 2012;16:1–18.
  • 2. Burg M L, Chai Y, Yao C A, Magee W 3rd, Figueiredo J C. Epi- demiology, Etiology, and Treatment of Isolated Cleft Palate. Front Physiol 2016;7:67.
  • 3. Watkins SE, Meyer RE, Strauss RP, Aylsworth AS. Classification, epidemiology, and genetics of orofacial clefts. Clin Plast Surg 2014;41:149–63.
  • 4. Martinelli M, Palmieri A, Carinci F, Scapoli L. Non-syndromic cleft palate: an overview on human genetic and environmen- tal risk factors. Front Cell Dev Biol 2020;8:592271.
  • 5. Suzuki A, Sangani D R, Ansari A, Iwata J. Molecular mechanisms of midfacial developmental defects. Dev Dyn 2016;245:276–93.
  • 6. Hu J, Lu J, Lian G, Ferland R J, Dettenhofer M, Sheen V L. Formin 1 and filamin B physically interact to coordinate chondro- cyte proliferation and differentiation in the growth plate. Hum Mol Genet 2014;23:4663–73.
  • 7. Letra A, Menezes R, Granjeiro J M, Vieira A R. Axin2 and Cdh1 polymorphisms, tooth agenesis, and oral clefts. Birth Defects Res A Clin Mol Teratol 2009;85:169–73.
  • 8. Chiquet B T, Lidral A C, Stal S, Mulliken J B, Moreno L M, Arcos- Burgos M, et al. Crispld2: A novel nsclp candidate gene. Hum Mol Genet 2007;16:2241–8.
  • 9. Casey L M, Lan Y, Cho E S, Maltby K M, Gridley T, Jiang R. Jag2- notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn 2006;235:1830–44.
  • 10. Venza M, Visalli M, Venza I, Torino C, Tripodo B, Melita R, et al. Altered binding of Myf-5 to Foxe1 promoter in non-syn- dromic and charge-associated cleft palate. J Oral Pathol Med. 2009;38:18–23.
  • 11. Gu M, Zhang Y, Liu H, Liu J, Zhu D, Yang X. Msh homeobox 1 polymorphisms and the risk of non-syndromic orofacial clefts: a meta-analysis. Eur J Oral Sci 2018;126:180–5.
  • 12. Fu X, Cheng Y, Yuan J, Huang C, Cheng H, Zhou R. Loss-of- function mutation in the X-linked Tbx22 promoter disrupts an Ets-1 binding site and leads to cleft palate. Hum Gen- et.2015;134:147–58.
  • 13. Nikopensius T, Jagomagi T, Krjutskov K, Tammekivi V, Saag M, Prane I, et al. Genetic variants in Col2a1, Col11a2, and Irf6 con- tribute risk to nonsyndromic cleft palate. Birth Defects Res A Clin Mol Teratol 2010;88:748–56.
  • 14. McCarthy N, Liu JS, Richarte AM, Eskiocak B, Lovely CB, Tal- lquist MD, et al. Pdgfra and Pdgfrb genetically interact during craniofacial development. Dev Dyn 2016;245:641–52.
  • 15. van Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers- Jagtman AM, Zielhuis GA, et al. Smoking, genetic polymor - phisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology 2001;12:502–7.
  • 16. Wu T, Schwender H, Ruczinski I, Murray JC, Marazita ML, Mung- er RG, et al. Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate. PLoS One 2014;9:e88088.
  • 17. Trivedi PB, Padovano WM, Skolnick GB, Menezes MD, Grames LM, Cheung S, et al. Evaluation of discipline-spe- cific outcomes through a multidisciplinary team clinic for patients with isolated cleft palate. Cleft Palate Craniofac J 2021;58:1517–25.
  • 18. Shkoukani MA, Lawrence LA, Liebertz DJ, Svider PF. Cleft palate: a clinical review. Birth Defects Res C Embryo Today 2014;102:333–42.
  • 19. Bureau A, Parker MM, Ruczinski I, Taub MA, Marazita ML, Mur- ray JC, et al. Whole exome sequencing of distant relatives in multiplex families implicates rare variants in candidate genes for oral clefts. Genetics 2014;197:1039–44.
  • 20. Pengelly RJ, Arias L, Martinez J, Upstill-Goddard R, Seaby EG, Gibson J, et al. Deleterious coding variants in multi-case fami- lies with non-syndromic cleft lip and/or palate phenotypes. Sci Rep 2016;6:30457.
  • 21. Greenberg MVC, Bourc'his D. The diverse roles of DNA meth- ylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019;20:590–607.
  • 22. Leenen FA, Muller CP, Turner JD. DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics 2016;8:92.
  • 23. Garland MA, SunB, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and mirnas in orofacial clefts. Birth Defects Res 2020;112:1635–59.
  • 24. Iacobazzi V, Infantino V, Castegna A, Andria G. Hyperhomo- cysteinemia: Related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Mol Genet Metab 2014;113:27–33.
  • 25. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204–20.
  • 26. Alvizi L, Ke X, Brito LA, Seselgyte R, Moore GE, Stanier P, et al. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects. Sci Rep 2017;7:2441.
  • 27. Bengani H, Handley M, Alvi M, Ibitoye R, Lees M, Lynch S A, et al. Clinical and molecular consequences of disease-associated de novo mutations in satb2. Genet Med 2017;19:900–8.
  • 28. FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Wil- liamson K, et al. Identification of Satb2 as the cleft palate gene on 2q32-Q33. Hum Mol Genet 2003;12:2491–501.
  • 29. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: A flexible and comprehensive bio- conductor package for the analysis of infinium DNA methyla- tion microarrays. Bioinformatics 2014;30:1363–9.
  • 30. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. Champ: 450k chip analysis methylation pipeline. Bioinformatics 2014;30:428–30.
  • 31. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 2016;374:20150202.
  • 32. Afyouni S, Smith S M, Nichols T E. Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation. Neuroimage 2019;199:609–25.
  • 33. Smyth GK. Linear models and empirical bayes methods for as- sessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:Article3.
  • 34. Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N, et al. Identification of a specific re- programming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012;109:16196–201.
  • 35. Luo C, Hajkova P, Ecker JR. Dynamic DNA Methylation: in the right place at the right time. Science 2018;361:1336–40.
  • 36. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008;9:465–46.
  • 37. Ferguson MW. Palate development. Development 1988;103:41–60.
  • 38. Logan SM, Benson MD. Medial epithelial seam cell migration during palatal fusion. J Cell Physiol 2020;235:1417–24.
  • 39. Lan Y, Xu J, Jiang R. Cellular and molecular mechanisms of palatogenesis. Curr Top Dev Biol 2015;115:59–84.
  • 40. Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Cha- owanapanja P, Gahl WA, et al. Heterozygous nonsense muta- tion Satb2 associated with cleft palate, osteoporosis, and cog- nitive defects. Hum Mutat 2007;28:732–8.
  • 41. Gyorgy A B, Szemes M, de Juan Romero C, Tarabykin V, Agoston DV. Satb2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neuro- sci.2008;27:865–73.
  • 42. Yu F, Liang M, Huang Y, Wu W, Zheng B, Chen C. Hypoxic tu- mor-derived exosomal mir-31-5p promotes lung adenocar - cinoma metastasis by negatively regulating satb2-reversed emt and activating mek/erk signaling. J Exp Clin Cancer Res 2021;40:179.
  • 43. Dobreva G, Dambacher J, Grosschedl R. Sumo Modification of a novel mar-binding protein, satb2, modulates immunoglob- ulin mu gene expression. Genes Dev 2003;17:3048–61.
APA Ji Y, yandan x, zhang m, Zhou J, Peng L, zheng Y, Shu S (2023). Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. , 165 - 173. 10.14744/ejmo.2023.41377
Chicago Ji Yingwen,yandan xie,zhang ming,Zhou Jieyan,Peng Li-hong,zheng Yingling,Shu Shenyou Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. (2023): 165 - 173. 10.14744/ejmo.2023.41377
MLA Ji Yingwen,yandan xie,zhang ming,Zhou Jieyan,Peng Li-hong,zheng Yingling,Shu Shenyou Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. , 2023, ss.165 - 173. 10.14744/ejmo.2023.41377
AMA Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. . 2023; 165 - 173. 10.14744/ejmo.2023.41377
Vancouver Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. . 2023; 165 - 173. 10.14744/ejmo.2023.41377
IEEE Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S "Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only." , ss.165 - 173, 2023. 10.14744/ejmo.2023.41377
ISNAD Ji, Yingwen vd. "Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only". (2023), 165-173. https://doi.org/10.14744/ejmo.2023.41377
APA Ji Y, yandan x, zhang m, Zhou J, Peng L, zheng Y, Shu S (2023). Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, 7(2), 165 - 173. 10.14744/ejmo.2023.41377
Chicago Ji Yingwen,yandan xie,zhang ming,Zhou Jieyan,Peng Li-hong,zheng Yingling,Shu Shenyou Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology 7, no.2 (2023): 165 - 173. 10.14744/ejmo.2023.41377
MLA Ji Yingwen,yandan xie,zhang ming,Zhou Jieyan,Peng Li-hong,zheng Yingling,Shu Shenyou Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, vol.7, no.2, 2023, ss.165 - 173. 10.14744/ejmo.2023.41377
AMA Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology. 2023; 7(2): 165 - 173. 10.14744/ejmo.2023.41377
Vancouver Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology. 2023; 7(2): 165 - 173. 10.14744/ejmo.2023.41377
IEEE Ji Y,yandan x,zhang m,Zhou J,Peng L,zheng Y,Shu S "Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only." Eurasian Journal of Medicine and Oncology, 7, ss.165 - 173, 2023. 10.14744/ejmo.2023.41377
ISNAD Ji, Yingwen vd. "Role of SATB2 5' Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only". Eurasian Journal of Medicine and Oncology 7/2 (2023), 165-173. https://doi.org/10.14744/ejmo.2023.41377