Yıl: 2023 Cilt: 18 Sayı: 2 Sayfa Aralığı: 172 - 183 Metin Dili: İngilizce DOI: 10.14744/megaron.2023.23080 İndeks Tarihi: 06-07-2023

Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions

Öz:
Elderly individuals may experience hearing difficulties for various reasons. The most common of these is age-related hearing loss called presbycusis. Due to these changes in auditory sensitivity, it is difficult to hear and understand speech at certain frequencies. Due to the acoustic design based on the auditory sensitivity of the younger ear, elderly listeners may have hearing difficulties, especially in conference rooms without a sound system. The objective of this research is to provide acoustic comfort conditions in conference halls that can be suitable for all listeners. In this context, new optimum reverberation times were determined for three different age groups to eliminate the negative effects of auditory sensitivity distinctions on speech intelligibility. The obtained results were compared to the reference values determined for the objective room acoustics parameters in various standards (ISO, DIN, JIS, etc.) for young and elderly listeners. A 3000 m3 (volume) conference hall was chosen as an example to support the research with a listening test and a survey. Following the completion of the listening test studies for a receiver point located approximately in the center of the hall, the data were analyzed in a statistical program. Based on these evaluations, it seems evident that the subjective and objective data overlap and that the intelligibility values can be improved by applying the new reverberation times determined by the study’s method to the halls. It is thought that the research will make significant contributions to the improvement of acoustic comfort in conference rooms.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akdağ, N. (1995). A New Approach in Determining the Acoustic Conditions of the Room to Eliminate the Negative Effects of Auditory Sensitivity Distinctions on Intelligibility in Rooms for Speech [Doctoral dis sertation, Yıldız Technical University].
  • Barron, M. (2009). Auditorium acoustics and architectural design. Routledge.
  • Bradley, J. S. (2002). Acoustical design of rooms for speech. Ottawa, ON: Institute for Research in Construction, National Research Council of Canada.
  • British Standards Institution. (2011). Sound System Equip ment Part 16: Objective Rating of Speech Intelligibil ity by Speech Transmission Index (BS EN Standard No 60268). Retrieved from (https://resource.isvr. soton.ac.uk/staff/pubs/PubPDFs/BS%20EN%20 60268-16.pdf)
  • French, N. R., & Steinberg, J. C. (1947). Factors governing the intelligibility of speech sounds. The journal of the Acoustical society of America, 19(1), 90-119.
  • German Institute for Standardisation (2004-05). Acoustic Quality in Rooms Specifications and Instructions for the Room Acoustic Design (DIN Standard No 18041). Retrieved from (https://www.beuth.de/en/ standard/din-18041/245356770)
  • Ilgurel N (Project Manager), Akdag N (Advisor). (2017). Determination of criteria related to acoustic con ditions required in the design of higher education classrooms. (Project No: 2013-03-01-GEP01). Yıldız Technical University BAP-GEP Project.
  • International Organization for Standardization. (2003). Er gonomics — Assessment of speech communication (ISO Standard No 9921). Retrieved from (https:// www.iso.org/standard/33589.html)
  • International Organization for Standardization. (2008). Er gonomics data and guidelines for the application of ISO/IEC Guide 71 to products and services to ad dress the needs of older persons and persons with disabilities (ISO/TR Standard No 22411). Retrieved from (https://www.iso.org/standard/40933.html)
  • International Organization for Standardization. (2014). Guide for addressing accessibility in standards (ISO/ IEC Guide No 71). Retrieved from (https://www.iso. org/standard/57385.html)
  • International Organization for Standardization. (2017). Acoustics-Statistical distribution of hearing thresh olds related to age and gender (ISO Standard No 7029). Retrieved from (https://www.iso.org/stan dard/42916.html)
  • Japan Standard Association. (2002). A guideline for deter mining the acoustic properties of auditory signals used in consumer products (JIS TR Standard No 0001). Retrieved from (https://www.jsa.or.jp/en/)
  • Japan Standard Association. (2011). Guidelines for older persons and persons with disabilities- Auditory sig nals for consumer products (JIS Standard No 0013). Retrieved from (https://www.jsa.or.jp/en/)
  • Japan Standard Association. (2013). Ergonomics-Accessi ble Design- Sound Pressure levels of auditory sig nals for consumer products (JIS Standard No 0014). Retrieved from (https://www.jsa.or.jp/en/)
  • Kurakata, K., & Mizunami, T. (2005). Reexamination of the age-related sensitivity decrease in ISO 7029: Do the Japanese have better hearing sensitivity?. Acoustical science and technology, 26(4), 381-383.
  • Kurakata, K., & Sagawa, K. (2008). Development and stan dardization of accessible design technologies that address the needs of senior citizens. Synthesiology English edition, 1(1), 15-23.
  • Newell, A. F., & Gregor, P. (1997). Human computer in terfaces for people with disabilities. In Handbook of human-computer interaction (pp. 813-824). North-Holland.
  • Nocke, C. (2018). DIN 18041-a German view. In Proceed ings of Euronoise (pp. 1033-1038).
  • Odeon Application Note (2014). Guidance on computer prediction models to calculate the Speech Transmis sion Index for BB93, Version 1.0
  • Rettinger, M. (1988). Handbook of Architectural Acoustics and Noise Control: a manual for architects and en gineers. Tab Books.
  • Robinson, D. W., & Sutton, G. J. (1978). A comparative analysis of data on the relation of pure tone audio metric thresholds to age. Unknown.
  • Sato, H. (2006). Accessible speech message for the elderly in rooms. Proc. WESPAC IX, 2006.
  • Sato, H., Morimoto, M., & Ota, R. (2011). Acceptable range of speech level in noisy sound fields for young adults and elderly persons. The Journal of the Acoustical Society of America, 130(3), 1411-1419.
  • Sato, H., Sato, H., Morimoto, M., & Ota, R. (2004). Optimal speech level by public address system for young and elderly listeners. young (Ex. I), 70(80), 90.
  • Schroeder, M., Rossing, T. D., Dunn, F., Hartmann, W. M., Campbell, D. M., & Fletcher, N. H. (2007). Springer handbook of acoustics.
  • Shipton, M. S. (1979). Tables relating pure-tone audiomet ric threshold to age. NPL Acoustics Report.
  • Stephanidis, C. (2009). The universal access handbook. CRC Press.
APA Şentürk H, Yüğrük Akdağ N (2023). Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. , 172 - 183. 10.14744/megaron.2023.23080
Chicago Şentürk Hazal,Yüğrük Akdağ Neşe Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. (2023): 172 - 183. 10.14744/megaron.2023.23080
MLA Şentürk Hazal,Yüğrük Akdağ Neşe Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. , 2023, ss.172 - 183. 10.14744/megaron.2023.23080
AMA Şentürk H,Yüğrük Akdağ N Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. . 2023; 172 - 183. 10.14744/megaron.2023.23080
Vancouver Şentürk H,Yüğrük Akdağ N Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. . 2023; 172 - 183. 10.14744/megaron.2023.23080
IEEE Şentürk H,Yüğrük Akdağ N "Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions." , ss.172 - 183, 2023. 10.14744/megaron.2023.23080
ISNAD Şentürk, Hazal - Yüğrük Akdağ, Neşe. "Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions". (2023), 172-183. https://doi.org/10.14744/megaron.2023.23080
APA Şentürk H, Yüğrük Akdağ N (2023). Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. Megaron, 18(2), 172 - 183. 10.14744/megaron.2023.23080
Chicago Şentürk Hazal,Yüğrük Akdağ Neşe Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. Megaron 18, no.2 (2023): 172 - 183. 10.14744/megaron.2023.23080
MLA Şentürk Hazal,Yüğrük Akdağ Neşe Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. Megaron, vol.18, no.2, 2023, ss.172 - 183. 10.14744/megaron.2023.23080
AMA Şentürk H,Yüğrük Akdağ N Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. Megaron. 2023; 18(2): 172 - 183. 10.14744/megaron.2023.23080
Vancouver Şentürk H,Yüğrük Akdağ N Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions. Megaron. 2023; 18(2): 172 - 183. 10.14744/megaron.2023.23080
IEEE Şentürk H,Yüğrük Akdağ N "Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions." Megaron, 18, ss.172 - 183, 2023. 10.14744/megaron.2023.23080
ISNAD Şentürk, Hazal - Yüğrük Akdağ, Neşe. "Optimization of the room acoustics parameters values depending on auditory sensitivity distinctions". Megaron 18/2 (2023), 172-183. https://doi.org/10.14744/megaron.2023.23080