Yıl: 2023 Cilt: 11 Sayı: 5 Sayfa Aralığı: 905 - 919 Metin Dili: İngilizce DOI: 10.24925/turjaf.v11i5.905-919.5830 İndeks Tarihi: 06-07-2023

Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria

Öz:
Probiotic microorganisms are heavily influenced by product matrix and food processing processes, along with factors such as temperature, pH, oxygen, water activity. Alternative technologies to heat treatment have become increasingly important in recent years to design innovative food products with increased probiotic viability, prebiotic stability and higher concentration of bioactive compounds. The application of these developing alternative technologies to probiotic products increases the viability of probiotic bacteria and improves biological effects such as binding of cholesterol with probiotic fermentation, adhesion to Caco-2 cells, increasing angiotensin-converting enzyme (ACE) inhibitor, antioxidant, antimicrobial activity and lowering systolic blood pressure. In addition, these technologies optimize fermentation kinetics, and bacterial activity results in the production, fermentation and preservation of bioactive compounds such as bacteriocin, oligosaccharide, peptide, phenolic compound, flavonoids (vitamin and mineral bioavailability), and improving sensory properties. These technologies can also be applied to post-biotics, which have grown in recent years in order to achieve increased health effects. These studies demonstrate that alternative processing technologies increase the therapeutic effect of probiotics, prebiotics, and postbiotics in foods. This compilation examines the effect of thermal processing alternative technologies on probiotic fermentation.
Anahtar Kelime:

Probiyotik Bakterilerin Stress Koşullarının Azaltılmasında Alternatif Proses Teknolojileri

Öz:
Probiyotik mikroorganizmalar sıcaklık, pH, oksijen ve su aktivitesi gibi faktörler ile birlikte ürün matriksi ve gıda işlem proseslerinden büyük ölçüde etkilenmektedir. Isıl işleme alternatif teknolojiler, artan probiyotik canlılığı, prebiyotik stabilite ve daha yüksek biyoaktif bileşik konsantrasyonuna sahip yenilikçi gıda ürünlerini tasarlamak için son yıllarda giderek önem kazanmaktadır. Gelişen bu alternatif teknolojilerin probiyotik ürünlere uygulanması, bakteri canlılığını arttırmakla birlikte, probiyotik fermantasyonu ile kolesterolün bağlanması, Caco-2 hücrelerine yapışma, anjiyotensin dönüştürücü enzim (ACE) inhibitörünü artırma, antioksidan, antimikrobiyal aktivite ve sistolik kan basıncını düşürme gibi biyolojik etkileri iyileştirmektedir. Ayrıca, bu teknolojiler ile fermantasyon kinetikleri optimize edilmekte, bakteri faaliyetleri sonucunda bakteriosin, oligosakkarit, peptit, fenolik bileşik, flavonoidler gibi bileşikler üretilmekte, fermente edilmekte, korunmakta, biyoaktif (vitamin ve mineral biyoyararlılığı) ve duyusal özellikler iyileştirilmektedir. Son yıllarda artan sağlık etkilerine sahip postbiyotikler elde etmek için de gelişen bu teknolojiler uygulanmaktadır. Çalışmalar, alternatif işleme teknolojilerinin gıdalardaki probiyotik, prebiyotik ve postbiyotiklerin terapötik etkisini artırdığını göstermektedir. Bu derlemede, ısıl işleme alternatif teknolojilerin probiyotik fermantasyonu üzerindeki etkisi incelenmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abida J, Rayees B, Masoodi F. 2014. Pulsed light technology: A novel method for food preservation. International Food Research Journal, 21(3): 839-848.
  • Aganovic K, Hertel C, Vogel R, Johne FR, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Volker H. 2021. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety, 20: 3225-3266. doi: 10.1111/1541-4337.12763
  • Akarca G, Ozkan M, Ozcan T. 2022. The impact of combination of solution plasma processing and pulsed electric field on the viability of probiotic bacteria, microbial growth, and structure of yoghurt drink. Journal of Food Processing and Preservation, 46:1-15. doi: 10.1111/jfpp.16616
  • Almada CN, Almada-Érix CN, Costa WKA, Graça JS, Cabral L, Noronha M.F, Sant’Ana AS. 2021a. Wheat-durum pasta added of inactivated Bifidobacterium animalis decreases glucose and total cholesterol levels and modulates gut microbiota in healthy rats. International Journal of Food Science and Nutrition, 72(6): 781-793. doi: 10.1080/09637486.2021.1877261
  • Almada CN, Almada-Érix CN, Roquetto AR, Santos-Junior VA, Cabral L, Noronha MF, Gonçalves AESS, Santos PD, Santos AD, Martinez J, Lollo PC, Costa WKA, Magnani M Sant’Ana AS. 2021b. Paraprobiotics obtained by six different inactivation processes: impacts on the biochemical parameters and intestinal microbiota of Wistar male rats. International Journal of Food Sciences and Nutrition, 72(8): 1057-1070. doi: 10.1080/09637486.2021.1906211
  • Almeida FDL, Cavalcante RS, Cullen PJ, Frias JM, Bourke P, Fernandes FA, Rodrigues S. 2015. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies, 32: 127-135. doi: 10.1016/j.ifset.2015.09.001
  • Almeida FDL, Gomes WF, Cavalcante RS, Tiwari BK, Cullen PJ, Frias JM, Rodrigues S. 2017. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Research International, 102: 282-290. doi: 10.1016/j.foodres.2017.09.072
  • Alves Filho EG, Cullen PJ, Frias JM, Bourke P, Tiwari BK, Brito ES, Tiwari BK. Brito ES, Rodrigue S, Fernandes FA. 2016. Evaluation of plasma, high-pressure and ultrasoundprocessing on the stability of fructooligosaccharides. International Journal of Food Science and Technology, 51(9): 2034-2040. doi: 10.1111/ijfs.13175
  • Amaral GV, Silva EK, Cavalcanti RN, Cappato LP, Guimaraes JT, Alvarenga VO, Cruz AG. 2017. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science and Technology, 64: 94-101.
  • Augusto PE. 2020. Challenges, trends and opportunities in food processing. Current Opinion in Food Science, 35: 72-78. doi: 10.1016/j.tifs.2017.04.004
  • Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A, Albenzio M, Cruz AG. 2017. Sheep milk: Physicochemical characteristics and relevance for functional food development. Comprehensive Reviews in Food Science and Food Safety,16(2): 247-262. doi: 10.1111/1541-4337.12250
  • Balthazar C, Santillo A, Guimarães J, Capozzi V, Russo P, Caroprese M, Silva M. 2019. Novel milk–juice beverage with fermented sheep milk and strawberry (Fragaria ananassa): Nutritional and functional characterization. Journal of Dairy Science, 102(12): 10724-10736. doi: 10.3168/jds.2019- 16909
  • Barba FJ, Galanakis CM, Esteve MJ, Frigola A, Vorobiev E. 2015. Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compoundsfrom blackberries. Journal of Food Engineering, 167: 38-44. doi: 10.1016/j.jfoodeng.2015.02.001
  • Barba FJ, Koubaa M, Prado-Silva L, Orlien V, Sant’Ana ADS. 2017. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: Areview. Trends in Food Science and Technology, 66: 20-35. doi: 10.1016/j.tifs.2017.05.011
  • Barros CP, Pires RPS, Guimarães JT, Abud YKD, Almada CN, Pimentel TC, Cruz AG. 2021a. Ohmic heating as a method of obtaining paraprobiotics: Impacts on cell structure and viability by flow cytometry. Food Research International, 140: 110061. doi: 10.1016/j.foodres.2020.110061
  • Barros S, Rocha C, Moura M, Barcelos MP, Silva C, Hage-Melim L. 2021b. Potential beneficial effects of kefir and its postbiotic, kefiran, on child food allergy. Food and Function, 12(9): 3770-3786. doi: 10.1039/d0fo03182h
  • Brandão LR, Brito Alves JL, Costa W, Ferreira G, Oliveira MP, Gomes Cruz A, Braga VA, Aquino JS, Vidal H, Noronha MF, Cabral L, Pimentel TC, Magnani M. 2021. Live and ultrasound-inactivated Lacticaseibacillus casei modulate the intestinal microbiota and improve biochemical and cardiovascular parameters in male rats fed a high-fat diet. Food and Function, 12: 5287-5300. doi: 10.1039/d1fo01064f
  • Burns PG, Patrignani F, Tabanelli G, Vinderola GC, Siroli L, Reinheimer JA, Lanciotti R. 2015. Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. Journal of Functional Foods, 13: 126-136. doi: 10.5772/intechopen.74448
  • Cappato LP, Ferreira MVS, Guimaraes JT, Portela JB, Costa ALR, Freitas MQ, Cruz AG. 2017. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62: 104-112. doi: 10.1016/j.tifs.2017.01.010
  • Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Cruz AG. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science and Technology,74: 56-68. doi: 10.1016/j.tifs.2018.02.008
  • Díaz LD, Fernández-Ruiz V, Cámara M. 2020. An international regulatory review of food health-related claims in functional food products labeling. Journal of Functional Foods, 68. doi: 10.1016/j.jff.2020.103896
  • Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT. 2012a. Bioconversion of isoflavones and the probiotic properties of the electroporated parent and subsequent three subcultures of Lactobacillus fermentum BT 8219 in biotin-soymilk. Journal of Microbiology and Biotechnology, 22(7): 947-959. doi: 10.4014/jmb.1112.12044
  • Gibson GR, Hutkins R, Sanders ME, Prescott S.L, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. 2017. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews in Gastroenterology and Hepatology, 14: 491-502. doi: 10.1038/nrgastro.2017.75
  • Gomes WF, Tiwari BK, Rodriguez Ó, Brito ES, Fernandes FAN, Rodrigues S. 2017. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218: 261-268. doi: 10.1016/j.foodchem.2016.08.132
  • Gómez-López VM, Koutchma T, Linden K. 2012. Ultraviolet and pulsed light processing of fluid foods. Novel thermal and non- thermal technologies for fluid foods, 185-223. doi: 10.1016/B978-0-12-381470-8.00008-6
  • González-Herrera SM, Bermúdez-Quiñones G, Ochoa-Martínez LA, Rutiaga-Quiñones OM, Gallegos-Infante J.A. 2021. Synbiotics: A technological approach in food applications. Journal of Food Science and Technology, 58(3): 811-824. doi: 10.1007/s13197-020-04532-0
  • Granato D, Barba FJ, Kovačević DB, Lorenzo JM, Cruz AG, Putnik P. 2020. Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11: 93-118. doi: 10.1146/annurev-food-032519-051708
  • Guimarães JT, Silva EK, Alvarenga VO, Costa ALR, Cunha RL, Sant’Ana AS, Cruz AG. 2018a. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44: 251- 260. doi: 10.1016/j.ultsonch.2018.02.012
  • Guimarães JT, Silva EK, Freitas MQ, Almeida Meireles MA, Cruz AG. 2018b. Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22: 62-66. doi: 10.1016/j.cofs.2018.01.015
  • Guimarães JT, Balthazar CF, Scudino H, Pimentel TC, Esmerino EA, Ashokkumar M, Cruz, AG. 2019a. Highintensity ultrasound: A novel technology for the development of probiotic andprebiotic dairy products. Ultrasonics Sonochemistry, 57: 12-21. doi: 10.1016/j.ultsonch.2019.05.004
  • Guimarães JT, Silva EK, Ranadheera CS, Moraes J, Raices RSL, Silva MC, Cruz AG. 2019b. Effect of high-intensity a prebiotic soursop whey beverage. Ultrasonics Sonochemistry, 55: 157- 164. doi: 10.1016/j.ultsonch.2019.02.025
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Salminen S. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope andappropriate use of the term probiotic. Nature Reviews in Gastroenterology and Hepatology, 11(8): 506-514. doi: 10.1038/nrgastro.2014.66
  • Huang G, Chen S, Tan Y, Dai C, Sun L, Ma H, He R. 2019. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrasonics Sonochemistry, 51: 315- 324. doi: 10.1016/j.ultsonch.2018.09.033
  • Jadhav HB, Annapure US, Deshmukh RR. 2021. Non-thermal Technologies for Food Processing. Frontier in Nutrition, 8: 657090. doi: 10.3389/fnut.2021.657090
  • Jeong SY, Velmurugan P, Lim JM, Oh BT, Jeong DY. 2018. Photobiological (LED light)-mediated fermentation of blueberry (Vaccinium corymbosum L.) fruit with probiotic bacteria to yield bioactive compounds. LWT - Food Science and Technology, 93: 158-166. doi: 10.1016/j.lwt.2018.03.038
  • Jiang H, Horst RL, Koszewski NJ, Goff JP, Christakos S, Fleet JC. 2020. Targeting 1,25(OH)2D-mediated calcium absorption machinery in proximal colon with calcitriol glycosides and glucuronides. Journal of Steroid Biochemistry and Molecular Biology, 198: 105574. doi: 10.1016/j.jsbmb.2019.105574
  • Joshi S, Mobeen A, Jan K, Bashir K, Azad ZRAA. 2019. Emerging technologies in dairy processing: Present status and future potential. Health and safety aspects of food processing technologies, Springer International Publishing, 105-120. doi: 10.1007/978-3-030-24903-8_6
  • Kaur N, Singh AK. 2016. Ohmic heating: Concept and applications: A review. Critical Reviews in Food Science and Nutrition,56(14): 2338-2351. doi: 10.1080/10408398.2013.835303
  • Keener KM, Misra NN. 2016. Future of cold plasma in food processing. Cold Plasma in Food and Agriculture: Fundamentals and Applications. Washington, DC: Elsevier, 343-60. doi: 10.1016/B978-0-12-801365-6.00014-7
  • Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G. 2018. Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3): 927-939. doi: 10.1016/j.jfda.2018.01.002
  • Khouryieh HA. 2021. Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67: 102559. doi: 10.1016/j.ifset. 2020.102559
  • Kim SS, Kang DH. 2015. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes. Journal of Applied Microbiology, 119(2): 475-486. doi: 10.1111/jam.12867
  • Knez Ž, Pantić M, Cör D, Novak Z, Knez Hrnčič M. 2019. Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification, 141: 107532. doi: 10.1016/j.cep.2019.107532
  • Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K. 2011. Emerging technologies in food processing. Annual Review of Food Science and Technology, 2(1): 203-235. doi: 10.1146/annurev.food.102308.124129
  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75: 83-91. doi: 10.1016/j.foodcont.2016.12.021
  • Loghavi L, Sastry SK, Yousef AE. 2007. Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 98(4): 872-881. doi: 10.1002/bit.21465
  • Loghavi L, Sastry SK, Yousef AE. 2008. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnology Progress, 24(1): 148-153. doi: 10.1021/bp070268v
  • Longoria-García S, Cruz-Hernández MA, Flores-Verástegui M, Contreras-Esquivel JC, Montañez-Sáenz JC, BelmaresCerda RE. 2018. Potential functional bakery products as delivery systems for prebiotics and probiotics health enhancers. Journal of Food Science and Technology, 55(3): 833-845. doi: 10.1007/s13197-017-2987-8
  • Lye HS, Karim AA, Rusul G, Liong MT. 2011. Electroporation enhances the ability of lactobacilli to remove cholesterol. Journal of Dairy Science, 94(10): 4820-4830. doi: 10.3168/jds.2011-4426
  • Lye HS, Alias KA, Rusul G, Liong MT. 2012. Ultrasound treatment enhances cholesterol removal ability of lactobacilli. Ultrasonics Sonochemistry, 19(3): 632-641. doi: 10.1016/j.ultsonch.2011.08.004
  • Mahendran R, Ramanan KR, Barba FJ, Lorenzo JM, LópezFernández O, Munekata PES, Tiwari BK. 2019. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science and Technology, 88: 67-79. doi: 10.1016/j.tifs.2019.03.010
  • Makroo HA, Rastogi NK, Srivastava B. 2020. Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology, 97: 451-465. doi: 10.1016/j.tifs.2020.01.015
  • Mandal R, Kant R. 2017. High-pressure processing and its applications in the dairy industry. Food Science and Technology Journal,1(1): 33-45.
  • Martins CP, Cavalcanti RN, Couto SM, Moraes J, Esmerino EA, Silva MC, Tadini CC. 2019. Microwave processing: current background and effects on the physicochemical and microbiological aspects of dairy products. Comprehensive Reviews in Food Science and Food Safety, 18(1): 67-83. doi: 10.1111/1541-4337.12409
  • Mason T, Chemat F, Ashokkumar M. 2015. Power ultrasonics for food processing in: Ashokkumar M, editor. Power Ultrasonics: Applications of High-Intensity Ultrasound. Cambridge: Elsevier Ltd. 815-43. doi: 10.1016/B978-1- 78242-028-6.00027-2
  • Matos KHO, Lerin LA, Soares D, Soares LS, Lima M, Monteiro AR, Vladimir Oliveira J. 2018. Effect of supercritical carbon dioxide processing on Vibrio parahaemolyticus in nutrient broth and in oysters (Crassostrea gigas). Journal of Food Science and Technology, 55(10): 4090-4098. doi: 10.1007/s13197-018-3335-3
  • McAuley CM, Singh TK, Haro-Maza JF, Williams R, Buckow R. 2016. Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Science & Emerging Technologies, 38: 365-373. doi: 10.1016/j.ifset.2016.09.030
  • McClements DJ, Grossmann L. 2021. The science of plantbased foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(4): 4049-4100. doi: 10.1111/1541-4337.12771
  • Misra NN, Jo C. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64: 74-86. doi: 10.1016/j.tifs.2017.04.005
  • Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ. 2017. Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97: 318-339. doi: 10.1016/j.foodres.2017.05.001
  • Narli MB, Ozcan T. 2022. Assessment of bifidogenic potential of cowpea (Vigna unguiculata (L.) Walp.) extract in in vitro and milk fermentation models. LWT-Food Science and Technology, 157, 113071: 1-8. doi: 10.1016/j.lwt.2022.113071
  • Nguyen TMP, Lee YK, Zhou W. 2009. Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. International Dairy Journal,19(6): 410-416. doi: 10.1016/j.idairyj.2009.02.004
  • Nguyen TMP, Lee YK, Zhou W. 2012. Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chemistry, 130(4): 866-874. doi: 10.1016/j.foodchem.2011.07.108
  • Nowosad K, Sujka M, Pankiewicz U, Kowalski R. 2021. The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2): 397-411. doi: 10.1007/s13197-020-04512-4
  • Ozcan T, Eroglu E. 2022. Effect of stevia and inulin interactions on fermentation profile and short-chain fatty acid production of Lactobacillus acidophilus in milk and in vitro systems”, International Journal of Dairy Technology, 75 (1): 171-181. doi: 10.1111/1471-0307.12814
  • Pandey KR, Naik SR, Vakil BV. 2015. Probiotics, prebiotics and synbiotics: A review. Journal of Food Science and Technology, 52(12): 7577-7587. doi: 10.1007%2Fs13197-015-1921-1
  • Pankiewicz U, Góral M, Kozłowicz K, Góral D. 2020. Application of pulsed electric field in production of ice cream enriched with probiotic bacteria (L. rhamnosus B 442) containing intracellular calcium ions. Journal of Food Engineering, 275: 109876. doi: 10.1016/j.jfoodeng.2019.109876
  • Parmar P, Singh AK, Meena GS, Borad S, Raju PN. 2018. Application of ohmic heating for concentration of milk. Journal of Food Science and Technology, 55(12): 4956-4963. doi: 10.1007%2Fs13197-018-3431-4
  • Parvarei M, Fazeli MR, Mortazavian AM, Sarem Nezhad S, Mortazavi SA, Golabchifar AA, Khorshidian N. 2021. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt. Food Research International, 140: 110030. doi: 10.1016/j.foodres.2020.110030
  • Peng M, Tabashsum Z, Anderson M, Truong A, Houser AK, Padilla J, Akmel A, Bhatti J, Rahaman SO, Biswas D. 2020. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Comprehensive Reviews in Food Science and Food Safety, 19: 1908-1933. doi: 10.1111/1541-4337.12565
  • Pereira MO, Guimarães JT, Ramos GLPA, Prado-Silva L, Nascimento JS, Sant’Ana AS, Cruz, AG. 2020. Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. LWT-Food Science and Technology,127: 109420. doi: 10.1016/j.lwt.2020.109420
  • Pérez-Sánchez T, Mora-Sánchez B, Vargas A, Balcázar JL. 2020. Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microbial Pathogenesis, 142: 104060. doi: 10.1016/j.micpath.2020.104060
  • Phan KTK, Phan HT, Brennan CS, Phimolsiripol Y. 2017. Non- thermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and Technology, 52(10): 2127-2137. doi: 10.1111/ijfs.13509
  • Pires R, Guimarães JT, Barros CP, Balthazar CF, Chincha A, Freitas MQ, Duarte M, Silva P, Pimentel TC, Abud Y, Sant’Anna C, Sant’Ana AS, Silva MC, Priyadarshini A, Rajauria G. 2019. Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19): 3082-3101. doi: 10.1080/10408398.2018.1483890
  • Priyadarshini A, Rajauria G, O’Donnell CP, Tiwari BK. 2019. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082-3101. doi: 10.1080/10408398.2018.1483890
  • Racioppo A, Corbo MR, Piccoli C, Sinigaglia M, Speranza B, Bevilacqua A. 2017. Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243: 78-83. doi: 10.1016/j.ijfoodmicro.2016.12.011
  • Ribeiro K, Coutinho NM, Silveira MR, Rocha RS, Arruda HS, Pastore GM, Neto R, Tavares M, Pimentel TC, Silva P, Freitas MQ, Esmerino EA, Silva MC, Duarte M, Cruz AG. 2021. Impact of cold plasma on the techno-functional and sensory properties of whey dairy beverage added with xylooligosaccharide. Food Research International, 142: 110232. doi: 10.1016/j.foodres.2021.110232
  • Rocha RS, Silva R, Guimarães JT, Balhtazar CF, Silveira MR, Martins AA, Rojas VP, Graça JS, Pimentel TC, Esmerino EA, Sant’An AS, Granato D, Freitas MQ, Barros ME, Silva MC, Cruz AG. 2020. Ohmic heating does not influence the biochemical properties of Minas Frescal cheese but decreases uric acid levels in healthy Wistar rats. Journal of Dairy Science, 103: 4929-4934. doi: 10.3168/jds.2019-17712
  • Rodrigues RQ, Dalmás M, Chemello Muller D, Dambróz Escobar D, Campani Pizzato A, Mercali GD, Tondo EC. 2017. Evaluation of non-thermal effects of electricity on inactivation kinetics of Staphylococcus aureus and Escherichia coli during ohmic heating of infant formula. Journal of Food Safety, 38(1): e12372. doi: 10.1111/jfs.12372
  • Saarela MH. 2019. Safety aspects of next generation probiotics. Current Opinion in Food Science, 30: 8-13. doi: 10.1016/j.cofs.2018.09.001
  • Salari S, Jafari SM. 2020. The influence of ohmic heating on degradation of food bioactive ingredients. Food Engineering Reviews, 12(2): 191-208. doi: 10.1007/s12393-020-09217-0
  • Silva EK, Guimarães JT, Costa ALR, Cruz AG, Meireles MAA. 2019a. Non-thermal processing of inulin-enriched soursop whey beverage using supercritical carbon dioxide technology. The Journal of Supercritical Fluids, 154: 104635. doi: 10.1016/j.supflu.2019.104635
  • Silva EK, Arruda HS, Eberlin MN, Pastore GM, Meireles MAA. 2019b. Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Research International, 125: 108561. doi: 10.1016/j.foodres. 2019.108561
  • Silva EK, Meireles MAA, Saldaña MDA. 2020. Supercritical carbon dioxide technology: A promising technique for the nonthermal processing of freshly fruit and vegetable juices. Trends in Food Science and Technology, 97: 381-390. doi: 10.1016/j.tifs.2020.01.025
  • Silva AB, Scudini H, Ramos G, Pires R, Guimarães JT, Balthazar CF, Rocha RS, Margalho LP, Pimentel TC, Siva MC, Sant’Ana AS, Esmerino EA, Freitas MQ, Duarte M, Cruz AG. 2021. Ohmic heating processing of milk for probiotic fermented milk production: Survival kinetics of Listeria monocytogenes as contaminant post-fermentation, bioactive compounds retention and sensory acceptance. International Journal of Food Microbiology, 348: 109204. doi: 10.1016/j.ijfoodmicro.2021.109204
  • Sliewska K, Chlebicz-Wójcik A. 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost- efficient semi-solid fermentation medium. Biology, 9(12): 423. doi: 10.3390/biology9120423
  • Soltani Firouz M, Farahmandi A, Hosseinpour S. 2019. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrasonics Sonochemistry, 57: 73-88. doi: 10.1016/j.ultsonch.2019.05.014
  • Tabanelli G, Patrignani F, Vinderola G, Reinheimer JA, Gardini F, Lanciotti R. 2013. Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT-Food Science and Technology, 53(2): 580-586. doi: 10.1016/j.lwt.2013.03.013
  • Temelli F, Saldaña MDA, Comin L. 2012. Application of supercritical fluid extraction in food processing. Comprehensive Sampling and Sample Preparation. Washington: Elsevier, 4: 415-40. doi: 10.1016/B978-0-12- 381373-2.00142-3
  • Tinoco A, Rodrigues RM, Machado R, Pereira RN, CavacoPaulo A, Ribeiro A. 2020. Ohmic heating as an innovative approach for the production of keratin films. International Journal of Biological Macromolecules,150: 671-680. doi: 10.1016/j.ijbiomac.2020.02.122
  • Vallianou N, Stratigou T, Christodoulatos GS, Tsigalou C, Dalamaga M. 2020. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Current Obesity Reports, 9(3): 179-192. doi: 10.1007/s13679-020-00379-w
  • Van Loey IA, Smout C, Hendrickx M. 2003. High hydrostatic pressure technology infood preservation. Zeuthen P, Bogh- Sorensen L, editors. Food Preservation Techniques. 428-48. doi: 10.1016/B978-1-85573-530-9.50023-1
  • Varghese KS, Pandey MC, Radhakrishna K, Bawa AS. 2014. Technology, applications and modelling of ohmic heating: A review. Journal of Food Science and Technology, 51(10): 2304-2317. doi: 10.1007/s13197-012-0710-3
  • Vorobiev E, Lebovka N. 2019. Pulsed electric field in green processing and preservation of food products. Green Food Processing Techniques. France: Elsevier, 403-30. doi: 10.1007/978-3-030-70586-2
  • Wang T, Chen H, Yu C, Xie X. 2019. Rapid determination of the electroporation threshold for bacteria inactivation using a lab on-a-chip platform. Environment International, 132: 105040. doi: 10.1016/j.envint.2019.105040
  • Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. 2021. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Research, 188: 116513. doi: 10.1016/j.watres.2020.116513
  • Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS. 2019. Non- thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science and Technology, 54(1): 1-13. doi: 10.1111/ijfs.13903
APA Ozcan T, Aksöz D (2023). Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. , 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
Chicago Ozcan Tulay,Aksöz Deniz Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. (2023): 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
MLA Ozcan Tulay,Aksöz Deniz Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. , 2023, ss.905 - 919. 10.24925/turjaf.v11i5.905-919.5830
AMA Ozcan T,Aksöz D Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. . 2023; 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
Vancouver Ozcan T,Aksöz D Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. . 2023; 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
IEEE Ozcan T,Aksöz D "Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria." , ss.905 - 919, 2023. 10.24925/turjaf.v11i5.905-919.5830
ISNAD Ozcan, Tulay - Aksöz, Deniz. "Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria". (2023), 905-919. https://doi.org/10.24925/turjaf.v11i5.905-919.5830
APA Ozcan T, Aksöz D (2023). Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 11(5), 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
Chicago Ozcan Tulay,Aksöz Deniz Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 11, no.5 (2023): 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
MLA Ozcan Tulay,Aksöz Deniz Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.11, no.5, 2023, ss.905 - 919. 10.24925/turjaf.v11i5.905-919.5830
AMA Ozcan T,Aksöz D Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2023; 11(5): 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
Vancouver Ozcan T,Aksöz D Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2023; 11(5): 905 - 919. 10.24925/turjaf.v11i5.905-919.5830
IEEE Ozcan T,Aksöz D "Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 11, ss.905 - 919, 2023. 10.24925/turjaf.v11i5.905-919.5830
ISNAD Ozcan, Tulay - Aksöz, Deniz. "Alternative Process Technologies in Reducing Stress Factors of Probiotic Bacteria". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 11/5 (2023), 905-919. https://doi.org/10.24925/turjaf.v11i5.905-919.5830