Yıl: 2023 Cilt: 29 Sayı: 2 Sayfa Aralığı: 135 - 142 Metin Dili: İngilizce DOI: 10.58600/eurjther.20232902-450.y İndeks Tarihi: 07-07-2023

Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors

Öz:
Objective: The aim of this study was to investigate the efficacy of diffusion-weighted magnetic resonance imaging (DW-MRI) as a reliable imaging modality for detecting metastatic neck lymph nodes of head and neck squamous cell carcinoma (SCC). Methods: Thirty-two patients underwent positron emission tomography computed tomography (PET/CT) and DW-MRI were evaluated. Histopathologic analysis of lymph node metastases was used as the gold standard for assessment. We analyzed differences in sensitivity, specificity, accuracy, positive predictive value and negative predictive value among the imaging modalities using the Chi-square test. Their discriminative power evaluated using the Receiver-Operating Characteristic curve and calculation of the area under the curve. The correlation between ADCmin and SUVmax was calculated using the Spearman test. SPSS 24 was used for statistical analyses. P value of 0.05 indicates a statistically significant difference. Results: A total of 32 patients with 50 neck dissections with head and SCC included. Sensitivity, specificity, accuracy, positive and negative predictive value of neck palpation was 72%, 60%, 70%, 62% and 80% respectively. Sensitivity, specificity, accuracy, positive and negative predictive value of DW-MRI was 87.5%, 96.2%, 92%, 95.5% and 89.3% respectively, according to ADCmin cutoff value 0.82×10-3s/mm2 . Sensitivity, specificity, accuracy, positive and negative predictive value of FDG-PET/CT was 91.7%, 100%, 96%, 100% and 92.9%, respectively, according to SUVmax cutoff value 3.4. For all neck dissections, there was a statistically significant inverse correlation between ADCmin and SUVmax (P<001). Conclusion: DW-MRI may be as reliable as FDG-PET/CT in detecting cervical lymph node metastases. DWI and FDG PET/CT can play a complementary role in clinical evaluation. Further research is needed.
Anahtar Kelime: Diffusion-weighted magnetic resonance imaging head and neck cancer squamous cell carcinoma Fluoro-2-deoxy- d-glucose-Positron emission tomography

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gormley M, Creaney G, Schache A, Ingarfield K (2022) Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 233(9):780-786. https://doi.org/10.1038/s41415-022-5166-x
  • 2. Dyba T, Randi G, Bray F, et al (2021) The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer. 157:308-347. https://doi.org/10.1016/j.ejca.2021.07.039
  • 3. Rogers SJ, Harrington KJ, Rhys-Evans P, O-Charoenrat P, Eccles SA (2005) Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev. 24(1):47-69. https://doi.org/10.1007/s10555-005-5047-1
  • 4. Di Martino E, Nowak B, Hassan HA, et al (2000) Diagnosis and Staging of Head and Neck Cancer. Arch Otolaryngol Neck Surg. 126(12):1457. https://doi.org/10.1001/ archotol.126.12.1457
  • 5. Sakamoto J, Yoshino N, Okochi K, et al (2009) Tissue characterization of head and neck lesions using diffusionweighted MR imaging with SPLICE. Eur J Radiol. 69(2):260- 268. https://doi.org/10.1016/j.ejrad.2007.10.008
  • 6. Wang J, Takashima S, Takayama F, et al (2001) Head and Neck Lesions: Characterization with Diffusion-weighted Echoplanar MR Imaging. Radiology. 220(3):621-630. https://doi. org/10.1148/radiol.2202010063
  • 7. Aksoy F, Veyseller B, Binay O, Apuhan T, Yildirim YS, Ozturan O (2010) Patterns of cervical metastasis from squamous cell carcinoma of the head and neck. Kulak Burun Bogaz Ihtis Derg. 20(5):249-254.
  • 8. Ying M, Bhatia KSS, Lee YP, Yuen HY, Ahuja AT (2013) Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer Imaging. 13(4):658-669. https://doi.org/10.1102/1470- 7330.2013.0056
  • 9. Meng W, Xing P, Chen Q, Wu C (2013) Initial experience of acoustic radiation force impulse ultrasound imaging of cervical lymph nodes. Eur J Radiol. 82(10):1788-1792. https://doi.org/10.1016/j.ejrad.2013.05.039
  • 10. Cho JK, Hyun SH, Choi N, et al (2015) Significance of Lymph Node Metastasis in Cancer Dissemination of Head and Neck Cancer. Transl Oncol. 8(2):119-125. https://doi.org/10.1016/j. tranon.2015.03.001
  • 11. Mathers CD, Shibuya K, Boschi-Pinto C, Lopez AD, Murray CJL (2002) Global and regional estimates of cancer mortality and incidence by site: I. Application of regional cancer survival model to estimate cancer mortality distribution by site. BMC Cancer. 2(1):36. https://doi.org/10.1186/1471- 2407-2-36
  • 12. Sumi M, Sakihama N, Sumi T, Morikawa M (2003) Discrimination of Metastatic Cervical Lymph Nodes with Diffusion-Weighted MR Imaging in Patients with Head and Neck Cancer. Am J Neuroradiol. 24:1627-1634.
  • 13. Abdel Razek AAK, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 16(7):1468-1477. https://doi.org/10.1007/s00330-005-0133-x
  • 14. Vandecaveye V, De Keyzer F, Vander Poorten V, et al (2009) Head and Neck Squamous Cell Carcinoma: Value of Diffusion-weighted MR Imaging for Nodal Staging. Radiology. 251(1):134-146. https://doi.org/10.1148/ radiol.2511080128
  • 15. Huisman TAGM, Loenneker T, Barta G, et al (2006) Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol. 16(8):1651-1658. https://doi.org/10.1007/s00330-006-0175-8
  • 16. Srinivasan A, Dvorak R, Perni K, Rohrer S, Mukherji SK (2008) Differentiation of Benign and Malignant Pathology in the Head and Neck Using 3T Apparent Diffusion Coefficient Values: Early Experience. Am J Neuroradiol. 29(1):40-44. https://doi.org/10.3174/ajnr.A0743
  • 17. Brouwer J, Senft A, de Bree R, et al (2006) Screening for distant metastases in patients with head and neck cancer: Is there a role for 18FDG-PET? Oral Oncol. 42(3):275-280. https://doi.org/10.1016/j.oraloncology.2005.07.009
  • 18. Paulus P, Sambon A, Vivegnis D, et al (1998) 18 FDG-PET for the assessment of primary head and neck tumors: Clinical, computed tomography, and histopathological correlation in 38 patients. Laryngoscope. 108(10):1578-1583. https:// doi.org/10.1097/00005537-199810000-00029
  • 19. Kresnik E, Mikosch P, Gallowitsch H, et al (2001) Evaluation of head and neck cancer with 18F-FDG PET: a comparison with conventional methods. Eur J Nucl Med. 28(7):816-821. https://doi.org/10.1007/s002590100554
  • 20. Ng SH, Yen TC, Liao CT, et al (2005) 18F-FDG PET and CT/ MRI in oral cavity squamous cell carcinoma: A prospective study of 124 patients with histologic correlation. J Nucl Med. 46(7):1136-1143.
  • 21. Murakami R, Uozumi H, Hirai T, et al (2007) Impact of FDGPET/ CT Imaging on Nodal Staging for Head-And-Neck Squamous Cell Carcinoma. Int J Radiat Oncol. 68(2):377-382. https://doi.org/10.1016/j.ijrobp.2006.12.032
  • 22. Sun R, Tang X, Yang Y, Zhang C (2015) 18FDG-PET/CT for the detection of regional nodal metastasis in patients with head and neck cancer: A meta-analysis. Oral Oncol. 51(4):314-320. https://doi.org/10.1016/j.oraloncology.2015.01.004
  • 23. Kitajima K, Suenaga Y, Minamikawa T, et al (2015) Clinical significance of SUVmax in 18F-FDG PET/CT scan for detecting nodal metastases in patients with oral squamous cell carcinoma. Springerplus. 4(1):718. https://doi. org/10.1186/s40064-015-1521-6
  • 24. Nakamatsu S, Matsusue E, Miyoshi H, Kakite S, Kaminou T, Ogawa T (2012) Correlation of apparent diffusion coefficients measured by diffusion-weighted MR imaging and standardized uptake values from FDG PET/CT in metastatic neck lymph nodes of head and neck squamous cell carcinomas. Clin Imaging. 36(2):90-97. https://doi. org/10.1016/j.clinimag.2011.05.002
APA Şahin Ş, duymaz y, ERKMEN B, KARABULUT B, deveci i, sürmeli m, Sahin-Yilmaz A, OYSU C (2023). Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. , 135 - 142. 10.58600/eurjther.20232902-450.y
Chicago Şahin Şamil,duymaz yaşar kemal,ERKMEN BURAK,KARABULUT BURAK,deveci ildem,sürmeli mehmet,Sahin-Yilmaz Asli,OYSU CAGATAY Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. (2023): 135 - 142. 10.58600/eurjther.20232902-450.y
MLA Şahin Şamil,duymaz yaşar kemal,ERKMEN BURAK,KARABULUT BURAK,deveci ildem,sürmeli mehmet,Sahin-Yilmaz Asli,OYSU CAGATAY Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. , 2023, ss.135 - 142. 10.58600/eurjther.20232902-450.y
AMA Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. . 2023; 135 - 142. 10.58600/eurjther.20232902-450.y
Vancouver Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. . 2023; 135 - 142. 10.58600/eurjther.20232902-450.y
IEEE Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C "Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors." , ss.135 - 142, 2023. 10.58600/eurjther.20232902-450.y
ISNAD Şahin, Şamil vd. "Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors". (2023), 135-142. https://doi.org/10.58600/eurjther.20232902-450.y
APA Şahin Ş, duymaz y, ERKMEN B, KARABULUT B, deveci i, sürmeli m, Sahin-Yilmaz A, OYSU C (2023). Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. European Journal of Therapeutics, 29(2), 135 - 142. 10.58600/eurjther.20232902-450.y
Chicago Şahin Şamil,duymaz yaşar kemal,ERKMEN BURAK,KARABULUT BURAK,deveci ildem,sürmeli mehmet,Sahin-Yilmaz Asli,OYSU CAGATAY Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. European Journal of Therapeutics 29, no.2 (2023): 135 - 142. 10.58600/eurjther.20232902-450.y
MLA Şahin Şamil,duymaz yaşar kemal,ERKMEN BURAK,KARABULUT BURAK,deveci ildem,sürmeli mehmet,Sahin-Yilmaz Asli,OYSU CAGATAY Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. European Journal of Therapeutics, vol.29, no.2, 2023, ss.135 - 142. 10.58600/eurjther.20232902-450.y
AMA Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. European Journal of Therapeutics. 2023; 29(2): 135 - 142. 10.58600/eurjther.20232902-450.y
Vancouver Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors. European Journal of Therapeutics. 2023; 29(2): 135 - 142. 10.58600/eurjther.20232902-450.y
IEEE Şahin Ş,duymaz y,ERKMEN B,KARABULUT B,deveci i,sürmeli m,Sahin-Yilmaz A,OYSU C "Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors." European Journal of Therapeutics, 29, ss.135 - 142, 2023. 10.58600/eurjther.20232902-450.y
ISNAD Şahin, Şamil vd. "Correlation of Diffusion-weighted MR imaging and FDG PET/CT in the Diagnosis of Metastatic Lymph Nodes of Head and Neck Malignant Tumors". European Journal of Therapeutics 29/2 (2023), 135-142. https://doi.org/10.58600/eurjther.20232902-450.y