Yıl: 2023 Cilt: 9 Sayı: 2 Sayfa Aralığı: 465 - 476 Metin Dili: Türkçe DOI: 10.28979/jarnas.1174437 İndeks Tarihi: 10-07-2023

2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini

Öz:
Bu çalışmada, 2-aminoasetofenon bileşiğinden başlanarak 2-,3-,4- bromo substitue azakalkon (1-3) bileşikleri sentezlendi. 1-3 Nolu bileşiklerinin katıfaz ortamında mikrodalga cihazı kullanılarak 2-, 3-, 4-bromo azaflavanon bileşikleri (4-6), sırasıyla %52, %89 ve %77 verimlerle sentezlendi. Sentezlenen bileşikler spektroskopik olarak 1Hidrojen, 13Karbon, Bağlanmış Proton Testi (APT) NMR, Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) Infrared ve Sıvı kromatografi-kütle spektrometresi/kütle spektrometresi (LC-MS/MS)yöntemleriyle karakterize edildi. Sentezlenen bileşiklerin antimikrobiyal aktiviteleri 12 ayrı mikroorganizmaya (4 adet Gram pozitif, 7 adet Gram negatif ve 1 fungus) karşı disk difüzyon yöntemi kullanılarak test edildi ve minimum inhibisyon konsantrasyonu (MİK) hesaplandı. Sentezlenen azakalkon ve azaflavanon bileşikleri (1-6) test edilen mikroorganizmalar arasında en yüksek etkiyi Candida tropicalis’a karşı gösterdi. 3-Bromo azaflavanon (5) bileşiği Gram pozitif Enterococcus feacalis, Staphylococcus aureus ve fungus Candida tropicalis’a karşı etkili bulundu. Test edilen hiçbir bileşik Gram negatif bakterilere karşı etkinlik göstermedi. Sentezlenen bileşikler arasında en yüksek aktiviteyi 6.25 µg/mL’lik MIC değeri ile 2 numaralı azakalkon bileşiği Candida tropicalis’a karşı gösterdi. Ayrıca sentezlenen 1-6 nolu bileşiklerin antioksidan aktiviteleri plazmanın demir indirgeme yeteneği (FRAP) ve 1,1-Difenil-2-pikrilhidrazil kapasitesi (DPPH) yöntemlerine göre yapıldı. Antioksidant testi sonucunda, 3-bromo kalkon (173,78±1,76 ve 0,48±0,01) ve 3-bromo azaflavanon (279,05±1,77 ve 0,093±0,001) bileşiklerinin en yüksek antioksidan aktiviteye sahip oldukları görüldü.
Anahtar Kelime: Azaflavanon antioksidan aktivite antimikrobiyal aktivite mikrodalga

Microwave Assisted Synthesis of 2-, 3-, 4-Bromo Azaflavonones from Amino Chalcones in Solid Phase Environment, Determination of Antimicrobial and Antioxidant Activities

Öz:
In this study, 2-, 3-, 4-bromo azachalcones (1-3) were synthesized starting from the 2-aminoacetophenone. 2-, 3-, 4-bromo azaflavanones (4-6) were synthesized from the compounds 1-3 by using a microwave method in the solid phase environment with the yields of 52%, 89%, and 77%, respectively. The synthesized compounds were characterized spectroscopically ( 1H, 13C, Attached Proton Test (APT) NMR, Fouirer Transform Infrared Spectrophotometer (FT-IR) and Liquid Chromatography-Mass Spectroscopy (LC-MS/MS). The antimicrobial activities of the synthesized compounds were tested against 12 different microorganisms (4 Gram positive, 7 Gram negative and 1 fungus) using the disk diffusion method and the minimum inhibition concentration (MIC) was calculated. The synthesized azachalcone and azaflavanone compounds (1-6) showed the highest efficacy against Candida tropicalis among the microorganisms tested. 3-Bromo azaflavanone (5) was found to be effective against Gram positive Enterococcus feacalis, Staphylococcus aureus and fungus Candida tropicalis. None of the compounds showed activity against Gram-negative bacteria. Compound 2 showed the highest activity against Candida tropicalis among the tested compounds with a MIC value of 6.25 µg/mL. In addition, antioxidant activities of synthesized compounds 1- 6 were performed according to FRAP and DPPH methods. As a result of the antioxidant test, it was observed that 3-bromo chalcone (173.78±1.76 and 0.48±0.01) and 3-bromo azaflavanone (279.05±1.77 and 0.093±0.001) had shown the highest antioxidant activity
Anahtar Kelime: Azaflavanon antimicrobial activity antioxidant activity microwave

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, N., Konduru, N. K., Praveen, Kumar, A. ve Kamaluddin. (2013). Silica supported-Double metal cyanides (DMCs): A green and highly efficient catalytic protocol for isomerisation of 2'- hydroxychalcones to flavanones. Journal of Molecular Catalysis A: Chemical Journal of Molecular Catalysis A: Chemical, 373, 135-141. https://doi.org/ 10.1016/j.molcata.2013.03.009.
  • Albogami, A. S., Alkhathlan, H. Z., Saleh, T. S. ve Elazzazy, A. M. (2014). Microwave-Assisted Synthesis of Potent Antimicrobial Agents of Flavanone Derivatives. Oriental Journal of Chemistry, 30 (2), 435-443. http://dx.doi.org/10.13005/ojc/300205.
  • Amelia, A., Almeida, P., Farah, A., Silva, D.A.M., Nunan, E.A. ve Gloria, B.A. (2006). Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria. Journal of Agricultural Food Chemistry, 54, 8738-8743. https://doi.org/10.1021/jf0617317.
  • Androutsopoulos, V.P., Papakyriakou, A., Vourloumis, D., Tsatsakis, A.M. ve Spandidos, D.A. (2010). Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacology & Therapeutics, 123(1), 9-20. https://doi.org/10.1016/j.pharmthera.2010.01.009.
  • Arianingrum, R. ve Arty, I.S. (2018). The effect of bromo chalcone [1-(4’-bromophenyl)-3-(4- hydroxy-3-methoxyphenyl)-2-propene-1-on] on T47D breast cancer cells AIP Conference Proceedings, 020071. https://doi.org/10.1063/1.5065031.
  • Bhattacharya , R. N., Kundu, P. ve Maiti, G. (2010). Antimony Trichloride: An Efficient and Mild Catalyst for Cyclization of 2-Aminochalcones to the Corresponding 2-Aryl-2,3- Dihydroquinolin-4(1H)-ones. Synthetic Communications, 40(4), 476–481. https://doi.org/10.1080/00397910902985523.
  • Benzie, I. F. F. ve Strain, J. J. (1999). Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration, Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/s0076-6879(99)99005-5.
  • Chandrasekhar, S., Pushpavalli, S. N., Chatla, S., Mukhopadhyay, D., Ganganna, B., Vijeender, K., Srihari, P., Reddy, C. R. ve Ramaiah, M. J. (2012). Aza-Flavanones as potent cross-species microRNA inhibitors that arrest cell cycle. Bioorganic & Medicinal Chemistry Letters, 22, 645-648. https://doi.org/ 10.1016/j.bmcl.2011.10.061.
  • Cheng, S., Zhao, L. ve Yu, S. (2014). Enantioselective Synthesis of Azaflavanones Using Organocatalytic 6-endo Aza-Michael Addition. Advanced Synthesis & Catalysis, 356, 982-986. https://doi.org/10.1002/adsc.201300920.
  • Chelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. ve Belfaitah, A. (2012). An efficient and rapid intramolecular aza-Michael addition of 2’-aminochalcones using ionic liquids as recyclable reaction media. Tetrahedron Letters, 53(32), 4059-4061. https://doi.org/10.1016/j.tetlet.2012.05.097.https://doi.org/10.1016/j.tetlet.2012.05.097
  • Cuendet, M., Hostettmann, K., Potterat, O. ve Dyatmiko, W. (1997). Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei. Helvetica Chimica Acta, 80, 1144–1152. https://doi.org/10.1002/hlca.19970800411.
  • Derabli, C. Mahdjoub S., Boulcina, R., Boumoud, B., Merazig, H. ve Debache, A. (2016). [C8dabco]Br: a mild and convenient catalyst for intramolecular cyclization of 2- aminochalcones to the corresponding 2-aryl-2,3-dihydroquinolin-4(1H)-ones. Chemistry of Heterocyclic Compounds, 52(2), 99–103. https://doi.org/ 10.1007/s10593-016-1840-8.
  • Díaz-Ortiz, Á., Prieto, P. ve Hoz, A. (2019). A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. The Chemical Record, 19, 85–97. https://doi.org/ 10.1002/tcr.201800059.
  • Dongamanti, A., Naji, H.H, Bommidi, V.L. ve Madderla, S. (2016). Microwave-assisted one-pot synthesis and antimicrobial evaluation of 2-(1-phenyl-3- (2-thienyl)-1H-pyrazol-4-yl)chroman-4-one derivatives. Heterocyclic Communications, 22(5), 259–264. https://doi.org/10.1515/hc-2016-0027.
  • Eddarir, S., Cotelle, N., Bakkour, Y. ve Rolando, C. (2003). An Efficient Synthesis of Chalcones Based on the Suzuki Reaction, Tetrahedron Letters, 44, 5359-5363. https://doi.org/10.1016/S0040-4039(03)01140-7.
  • Forkmann, G. ve Heller, W. (1999). Biosynthesis of flavonoids, In Comprehensive Natural Products Chemistry, Edited by Sankawa U., Elsevier; Amsterdam, 713-748. https://doi.org/10.1016/S0958-1669(00)00192-0.
  • Gorepatil, A. B., Gorepatil, P. B., Gaikwad, M. V., Mhamane, D. S., Phadkule, A. N. ve Ingle, V.S. (2018). Zirconyl Nitrate as an Efficient Catalyst for Facile Synthesis of 2-Aryl-2, 3-dihydroquinolin-4 (1H)-one Derivatives in Aqueous Medium. Synlett, 29(2), 235-237. https://doi.org/10.1055/s-0036-1589110.
  • Gupta, A., Jamatia, R., Patil, R.A., Ma, Y.R. ve Pal, A.K. (2018). Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: A green and sustainable approach. ACS Omega, 3(7), 7288–7299. https://doi.org/10.1021/acsomega.8b00334.
  • Hajlaoui, H., Trabelsi, N., Noumi, E., Snoussi, M., Fallah, H., Ksouri R. ve Bakhrouf, A. (2009). Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World Journal of Microbiology and Biotechnology, 25, 2227-2238. https://doi.org/10.1007/s11274-009-0130-3.
  • Hayes, B.L. (2004). Recent advances in microwave-assisted synthesis. Aldrichimica Acta, 37, 66-76. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/ 107/257/acta-vol37.pdf#page=74.
  • He, B., Phansavath, P. ve R.Vidal, V. (2021). Kinetic resolution of 2-aryl-2,3-dihydroquinolin-4(1H)- one derivatives by rhodium-catalysed asymmetric transfer hydrogenation. Organic Chemistry Frontiers, 8(11), 2504-2509. https://doi.org/10.1039/D1QO00141H.
  • Higuchi, K., Umegaki, E., Watanabe, T., Yoda, Y., Morita, E., Murano, M. ve Tokioka, S.A. (2009). Present status and strategy of NSAIDs-induced small bowel injury. Journal of Gastroenterology, 44, 879-888. https://doi.org/10.1007/s00535-009-0102-2.
  • Horikoshi, S., Watanabe, T., Narita, A., Suzuki, Y. ve Serpone, N. (2018). The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Scientific Reports, 8, 5151. https://doi.org/10.1038/s41598-018-23465-5.
  • Kahriman N., Iskender N.Y., Yucel M., Yayli N., Demir E. ve Demirbag Z. (2012). Microwave- assisted synthesis of 1,3′-diaza-flavanone/flavone and their alkyl derivatives with antimicrobial activity. The Journal of Heterocyclic Chemistry, 49, 71–79. https://doi.org/10.1002/jhet.800.
  • Li, J., Jin, L., Yu, C. ve Su, W. (2009). The cyclisation of 2'-aminochalcones using silica-supported Yb(OTf)3 under solvent-free conditions. Journal of Chemical Research, 3, 170-173. https://doi.org/10.3184/030823409X416974.
  • Lidström, P., Tierney, J., Wathey, B. ve Westman, J. (2001). Microwave Assisted Organic Synthesis- A Rewiew. Tetrahedron, 57, 9225-9283. http://dx.doi.org/10.1016/S0040-4020(01)00906-1.
  • Mavandadi, F. ve Lidström, P. 2004. Microwave-assisted Chemistry in Drug Discovery. Current Topics in Medicinal Chemistry, 4,773–792. https://doi.org/ 10.2174/1568026043451078.
  • Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. veYolke, R.H. (1995). Manual of clinical microbiology (7th ed.). Washington, DC: ASM, pp. 1773. Washington, DC: ASM. Organization, WH (2001) WHO global strategy for containment of antimicrobial resistance. https://www.worldcat.org/title/manual-of-clinical-microbiology/oclc/39914150.
  • Murti, Y., Pathak D. ve Pathak K. (2021). Green Chemistry Approaches to the Synthesis of Flavonoids. Current Organic Chemistry, 25(17), 2005-2027. https://doi.org/ 10.2174/1385272825666210728095624.
  • Nibbs, E. A. ve Scheidt, K. A. (2012). Asymmetric Methods for the Synthesis of Flavanones, Chromanones, and Azaflavanones. European Journal of Organic Chemistry, 3, 449–462. https://doi.org/10.1002/ejoc.201101228.
  • Nilsson, J., Nielsen, E. Q., Liljefors, T., Nielsen, M. ve Sterner, O. (2008). Azaflavones Compared to Flavones as Ligands to the Benzodiazepine Binding Site of Brain GABAA Receptors. Bioorganic & Medicinal Chemistry Letters, 18, 5713-5716. https://doi.org/10.1016/j.bmcl.2008.09.092.
  • NCCLS. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility test, approved standard. M2-A5, 1993. https://agris.fao.org/agris-search/search.do?recordID=US201300057077.
  • Pan, G. F., Su, L., Zhang, Y. L., Guo, S. H. ve Wang, Y. Q. (2016). Organocatalytic one-pot asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones. RSC Advances, 6(30), 25375- 25378.https://doi.org/10.1039/C6RA01247G.
  • Panche, A.N., Diwan, A.D. ve Chandra, S.R. (2016). Flavonoids: an overview, Journal of Nutritional Science, Cambridge University, Volume 5(e47):1-15.https://doi.org/ 10.1017/jns.2016.41.
  • Patoilo, D. T., Silva, A. M. S., Pinto, D. C. G. A., Tomé, A.C. ve Cavaleiro, J.A.S. (2007). Synthesis of 5-Hydroxy-2-(naphth-2-yl)chromone derivatives. Journal of Heterocyclic Chemistry, 44, 1345–1350. https://doi.org/10.1002/jhet.5570440617.
  • Patti, A., Pedotti, S., Grassi, T., Idolo, A., Guido, M. ve Donno, A.D. (2012). Synthesis of 2- ferrocenylquinoline derivatives and evaluation of their antimalarial activity. Journal of Organometallic Chemistry, 716, 216-221. https://doi.org/10.1016/j.jorganchem.2012.06.025.
  • Praveen, C., Parthasarathy K., Kumar P.S. ve Perumal P.T. (2015). Azaisoflavones: synthesis, antimicrobial evaluation and binding affinity with DNA gyrase. Indian Journal of Chemistry Section B, 54(3), 373-382. http://nopr.niscpr.res.in/handle/123456789/30945.
  • Rahim, A., Bhuiyan, M. M. H., Matin, M. M., Ali, R. ve Kabir, E. (2018). Synthesis of 2- Phenylchromen-4-one derivatives by conventional and microwave: Assisted techniques, and their antimicrobial evaluation. International Journal of Chemical Studies, 6(1), 1644-1647. https://www.researchgate.net/publication/341491752.
  • Rocha, D. H. A.,Vaz, P. A. A. M., Pinto, D. C. G. A. ve Silva, A. M. S. (2019). Synthesis Chalones and Their Isomerization into Flavanones and Azaflavanones. Methods and Protocols, 2, 70-78. https://doi.org/10.3390/mps2030070.https://doi.org/10.3390/mps2030070
  • Roleiraa, M. F. F., Varelaa, C. L., Gomes, A. R., Costa, S. C. ve Silva, E.J.T. (2021). The health components of spices and herbs: The medicinal chemistry point of view. Chapter 2: Aromatic Herbs in Food Bioactive Compounds, Processing, and Applications, Pages 35-92. https://seap.taylors.edu.my/file/rems/publication/107450_8147_1.pdf.
  • Rosa, G. P., Seca, A. M. L., Barreto, M. C., Silva, A. M. S. ve Pinto, D. C. G. A. (2019). Chalcones and flavanones bearing hydroxyl and/or methoxyl groups: Synthesis and biological assessments. Applied Sciences, 9(14), 2846-2863. https://doi.org/10.3390/app9142846.
  • Rozmer, Z. ve Perjési, P. (2016). Naturally occurring chalcones and their biological activities. Phytochemistry Reviews, 15, 87-120. https://doi.org/ 10.1007/s11101-014-9387-8.
  • Safari, J., Naseh, S., Zarnegar, Z. ve Akbari, Z. (2014). Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst. Journal of Taibah University for Science, 1(8), 323-330. https://doi.org/10.1016/j.jtusci.2014.01.007.
  • Saito, K., Moriya, Y. ve Akiyama, T. (2015). Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-quinolones by a Protecting-Group-Free Approach. Organic Letters, 17(13), 3202–3205. https://doi.org/10.1021/acs.orglett.5b01654.
  • Sakirolla, R., Yaeghoobi, M. ve Rahman, N.A. (2012). Synthesis of flavanones, azaflavanones, and thioflavanones catalyzed by PMA-SiO2 as a mild, efficient, and reusable catalyst. Monatshefte fuer Chemie, 143, 797-800. https://doi.org/10.1007/s00706-011-0663-7.
  • Santos, M.B., Pinhanelli, V.C., Garcia, M.A.R., Silva, G., Baek, S.J., França, S.C., Facin, A.L., Marins, M. ve Regasini, L.O. (2017). Antiproliferative and pro-apoptotic activities of 2- and 4-aminochalcones against tumor canine cells. European Journal of Medicinal Chemistry, 138, 884-889. https://doi.org/ 10.1016/j.ejmech.2017.06.049.
  • Sinyeue, C., Matsui, M., Oelgemöller, M., Bregier, F., Chaleix, V., Sol, V. ve Lebouvier, N. (2022). Synthesis and Investigation of Flavanone Derivatives as Potential New Anti-Inflammatory Agents. Molecules, 27, 1781-1801. https://doi.org/ 10.3390/molecules27061781.
  • Silva, A. M. S., Silva, A. M. G., Tomé, A. C. ve Cavaleiro, J. A. S. (1999). New Syntheses of Flavones from Diels–Alder Reactions of 2- Styrylchromones with ortho-Benzoquinodimethanes. European Journal of Organic Chemistry, 1999, 135-139. https://doi.org/10.1002/(SICI)1099- 0690(199901)1999:1<135::AID-EJOC135>3.0.CO;2-I.
  • Tehseen, F., Ghori, S.S., Khatoon, R., Sajid, S. ve Nafees, H. (2021). Comparative study of conventional and microwave assisted green synthesis of 6- amino flavones. International Journal of Botany Studies, 6(1), 536-539. http://www.botanyjournals.com/archives/2021/vol6/issue1/6-1-18.
  • Valavanidis, A. ve Vlachogianni, T. (2013). Chapter 8: Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. Studies in Natural Products Chemistry, 39, 269-295. https://doi.org/10.1016/B978-0-444-62615-8.00008-4.
  • Varma, S. R. 2002. Clay and Clay-Supported Reagents in Organic Synthesis. Tetrahedron, 58 (7), 1235-1255. https://doi.org/10.1016/S0040-4020(01)01216-9.
  • Yaşar, A., Akpınar, K., Burnaz, N. A., Küçük, M., Karaoğlu, Ş. A., Doğan, N. ve Yaylı, N. (2008). Microwave-Assisted Synthesis of 4’-Azaflavones and Their N-Alkyl Derivatives with Biological Activities, Chemistry & Biodiversity, 5, 830-838. https://doi.org/ 10.1002/cbdv.200890078.
  • Yaylı, N., Üçüncü, O., Yaylı, N., Demir, E. ve Demirbağ, Z. (2008). Microwave-Assisted Synthesis of 1,4′-Diazaflavone and N-Alkyl Derivative Pigments with Antimicrobial Activity, Turkish Journal of Chemistry, 32,785-795. https://journals.tubitak.gov.tr/chem/vol32/iss6/14.
  • Zhao, F., Zhao, Q. J., Zhao, J. X., Zhang, D. Z., Wu, Q. Y. ve Jin, Y. S. (2013). Synthesis and cdc25B inhibitory activity evaluation of chalcones. Chemistry of Natural Compounds, 49, 206–214. https://link.springer.com/content/pdf/10.1007/s10600-013-0563-7.pdf.
  • Zheng Y., Wang X., Gao S., Ma M., Ren G., Liu H. ve Chen X. (2015). Synthesis and antifungal activity of chalcone derivatives. Natural Product Research, 29(19), 1804-18010. https://doi.org/ 10.1080/14786419.2015.1007973.
  • Zhu, Y., Zhou, J., Li, J., Xu, K., Ye, J., Lu, Y., Liu, D. ve Zhang, W. (2021). Kinetic resolution of azaflavanones via a RuPHOX-Ru catalyzed asymmetric hydrogenation. Organic Chemistry Frontiers, 8, 6609–6615. https://doi.org/10.1039/D1QO01310F.
APA YUCEL T, Fandaklı S, Demir I, YAYLI N (2023). 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. , 465 - 476. 10.28979/jarnas.1174437
Chicago YUCEL TAYYİBE BEYZA,Fandaklı Seda,Demir Ismail,YAYLI Nurettin 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. (2023): 465 - 476. 10.28979/jarnas.1174437
MLA YUCEL TAYYİBE BEYZA,Fandaklı Seda,Demir Ismail,YAYLI Nurettin 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. , 2023, ss.465 - 476. 10.28979/jarnas.1174437
AMA YUCEL T,Fandaklı S,Demir I,YAYLI N 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. . 2023; 465 - 476. 10.28979/jarnas.1174437
Vancouver YUCEL T,Fandaklı S,Demir I,YAYLI N 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. . 2023; 465 - 476. 10.28979/jarnas.1174437
IEEE YUCEL T,Fandaklı S,Demir I,YAYLI N "2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini." , ss.465 - 476, 2023. 10.28979/jarnas.1174437
ISNAD YUCEL, TAYYİBE BEYZA vd. "2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini". (2023), 465-476. https://doi.org/10.28979/jarnas.1174437
APA YUCEL T, Fandaklı S, Demir I, YAYLI N (2023). 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. Journal of advanced research in natural and applied sciences (Online), 9(2), 465 - 476. 10.28979/jarnas.1174437
Chicago YUCEL TAYYİBE BEYZA,Fandaklı Seda,Demir Ismail,YAYLI Nurettin 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. Journal of advanced research in natural and applied sciences (Online) 9, no.2 (2023): 465 - 476. 10.28979/jarnas.1174437
MLA YUCEL TAYYİBE BEYZA,Fandaklı Seda,Demir Ismail,YAYLI Nurettin 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. Journal of advanced research in natural and applied sciences (Online), vol.9, no.2, 2023, ss.465 - 476. 10.28979/jarnas.1174437
AMA YUCEL T,Fandaklı S,Demir I,YAYLI N 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. Journal of advanced research in natural and applied sciences (Online). 2023; 9(2): 465 - 476. 10.28979/jarnas.1174437
Vancouver YUCEL T,Fandaklı S,Demir I,YAYLI N 2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini. Journal of advanced research in natural and applied sciences (Online). 2023; 9(2): 465 - 476. 10.28979/jarnas.1174437
IEEE YUCEL T,Fandaklı S,Demir I,YAYLI N "2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini." Journal of advanced research in natural and applied sciences (Online), 9, ss.465 - 476, 2023. 10.28979/jarnas.1174437
ISNAD YUCEL, TAYYİBE BEYZA vd. "2-, 3-, 4-Bromo Azaflavanonların Amino Kalkonlardan Katı Faz Ortamında Mikrodalga Destekli Sentezi, Antimikrobiyal ve Antioksidan Aktivitelerinin Tayini". Journal of advanced research in natural and applied sciences (Online) 9/2 (2023), 465-476. https://doi.org/10.28979/jarnas.1174437