Yıl: 2023 Cilt: 29 Sayı: 3 Sayfa Aralığı: 221 - 230 Metin Dili: İngilizce DOI: 10.9775/kvfd.2023.28970 İndeks Tarihi: 10-07-2023

Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases

Öz:
Listeriosis is a rare but severe foodborne infection caused by Listeria monocytogenes. In this study, we performed comparative whole-genome sequencing (WGS) on 28 Listeria monocytogenes from seven invasive listeriosis cases in animals and 21 food samples in Türkiye for the first time. Food isolates were delineated into eleven clonal complexes (CCs), namely CC1, CC2, CC3, CC8, CC9, CC20, CC69, CC124, CC155, CC204, ST3002. The isolates from meningoencephalitis cases were associated with CC1, whereas CC9 and CC7 were associated with the isolates from sheep abortus cases. All the isolates carried the fosX, lin, norB, and sul genes. In addition, emrC (n=15), bcrC (n=4), emrE (n=2), qacA (n=1), cadA (n=5) and cadC (n=1) genes, conferring resistance to stress and disinfectants were detected. Listeria pathogenicity island (LIPI)-1 and LIPI-2 were distributed in all isolates, but LIPI-3 was closely related to CC1, CC3, and ST3002 isolates. LIPI-4 was not found in any of the L. monocytogenes isolates. The Inc18(rep25) and Inc18(rep26) plasmids were found in 16 (57.1%) isolates. A total of 15 different intact prophage genomes ranging from one to three were detected in the genomes of 24 isolates. The hypervirulent CC1 and CC2 clones that pose a significant threat to food safety and public health were detected among food isolates. These findings highlight the importance of continuous surveillance of hypervirulent L. monocytogenes strains in different settings.
Anahtar Kelime:

Gıda ve Hayvan Klinik Listeria monocytogenes İzolatlarının Tam Genom Dizilimine Dayalı Karakterizasyonu

Öz:
Listeriosis, Listeria monocytogenes’in neden olduğu nadir görülen fakat ciddi klinik seyre sahip gıda kaynaklı bir enfeksiyondur. Bu çalışmada, hayvanlardaki invaziv listeriozis vakalarından (n=7) ve farklı gıda örneklerinden (n=21) izole edilen 28 Listeria monocytogenes suşunun karşılaştırmalı tam genom dizileme (WGS) ile analizi yapıldı. Gıda izolatları CC1, CC2, CC3, CC8, CC9, CC20, CC69, CC124, CC155, CC204, ST3002 olmak üzere onbir klonal komplekse (CC) ayrıldı. Meningoensefalit vakalarına ait izolatlar CC1’e ait iken, koyun abortus vakalarına ait izolatlar CC9 ve CC7’e ait bulundu. Tüm izolatlarda fosX, lin, norB ve sul genleri belirlendi. Ayrıca, değişen oranlarda stres ve dezenfektan direncine aracılık eden emrC (n=15), bcrC (n=4), emrE (n=2), qacA (n=1), cadA (n=5) ve cadC (n=1) genleri tespit edildi. Listeria patojenite adası (LIPI)-1 ve LIPI-2 tüm izolatlarda tespit edilirken; LIPI-3 CC1, CC3 ve ST3002’e ait izolatlar ile yakın ilişkili bulundu. LIPI-4 L. monocytogenes izolatlarının hiçbirinde bulunmadı. Inc18(rep25) ve Inc18(rep26) plazmidleri 16 (%57.1) izolatta bulundu. Yirmidört izolatta bir - üç arasında değişen toplam 15 farklı intakt profaj genomu tespit edildi. Bu çalışmada gıda izolatları arasında gıda güvenliği ve halk sağlığı için önemli bir tehdit oluşturan hipervirülent CC1 ve CC2 klonları tespit edilmiştir. Bu bulgular, farklı ortamlarda hipervirülent L. monocytogenes suşlarının sürekli izlenmesinin önemini vurgulamaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Dreyer M, Aguilar-Bultet L, Rupp S, Guldimann C, Stephan R, Schock A, Otter A, Schüpbach G, Brisse S, Lecuit M, Frey J, Oevermann A: Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci Rep, 6:36419, 2016. DOI: 10.1038/srep36419
  • 2. Disson O, Moura A, Lecuit M: Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol, 29, 811-822, 2021. DOI: 10.1016/j.tim.2021.01.008
  • 3. Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M: Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol, 70, 4458-4467, 2004. DOI: 10.3389/ fmicb.2022.866462
  • 4. Dhama K, Karhik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK: Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Vet Q, 35, 211-235, 2015. DOI: 10.1080/01652176.2015.1063023
  • 5. Charlier C, Perrodeau É, Leclercq A, Czenave B, Pilmis B, Henry B, Lopes A, Maury MM, Moura A, Goffinet F, Fieye HB, Thouvenot P, Ungeheuer MN, Tourdjman M, Goulet V, de Valk H, Lortholary O, Ravaid P, Lecuit M: Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect Dis, 17, 510-519, 2017. DOI: 10.1016/S1473-3099(16)30521-7
  • 6. European Centre for Disease Prevention and Control (ECDC): Annual Epidemiology Report 2017-Listeriosis, https://www.ecdc.europa.eu/sites/ default/files/documents/listeriosis-annual-epidemiological- report-2017. pdf; Accessed: 12 July 2022.
  • 7. Osek J, Lachtara B, Wieczorek K: Listeria monocytogenes - How this pathogen survives in food-production environments? Front Microbiol, 13:866462, 2022. DOI: 10.3389/fmicb.2022.866462
  • 8. Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, Andrews N, Moua A, Fox EM, Jordan K, Lehner A, Stephan R, Fanning S: Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. mSphere, 4:e00252-e00319, 2019. DOI: 10.1128/ mSphere.00252-19
  • 9. Terentjeva M, Šteingolde Z, Meistere I, Elferts D, Avsenjenko J, Streikiša M, Gradovska S, Alksne L, Ķibilds J. Bērziņš A: Prevalence, genetic diversity and factors associated with distribution of Listeria monocytogenes and other Listeria spp. in cattle farms in Latvia. Pathogens, 10:851, 2021. DOI: 10.3390/pathogens10070851
  • 10. Elsayed MM, Elkenany RE, Zakaria AI, Badawy BM: Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms’ insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. Environ Sci Pollut Res, 29, 54359-54377, 2022. DOI: 10.1007/s11356-022- 19495-2
  • 11. Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C: New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun, 72, 1072-1083, 2004. DOI: 10.1128/IAI.72.2.1072-1083.2004
  • 12. Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S: A new perspective on Listeria monocytogenes evolution. PLoS Pathog, 4:e1000146, 2008. DOI: 10.1371/journal.ppat.1000146
  • 13. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Bjorkman JT, Dallman T, Reimer A, Enouf V, Larsonneur E, Carleton H, Bracq-Dieye H, Katz LS, Jones L, Touchon M, Tourdjman M, Walker M, Stroika S, Cantinelli T, Chenal-Francisque V, Kucerova Z, Rocha EP, Nadon C, Grant K, Nielsen EM, Pot B, Gerner-Smidt P, Lecuit M, Brisse S: Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol, 2:16185, 2016. DOI: 10.1038/nmicrobiol.2016.185
  • 14. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, LeclercqA,CriscuoloA,GaultierC,RousselS,BrisaboisA,DissonO,Rocha EPC, Brisse S, Lecuit M: Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet, 48, 308-313, 2016. DOI: 10.1038/ ng.3501
  • 15. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, Stinear TP, Seeman T, Howden BP: Prospective whole-genome sequencing enchances national surveillance of Listeria monocytogenes. J Clin Microbiol, 54, 584-640, 2016. DOI: 10.1128/JCM.02344-15
  • 16. Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG, Ross RP, Hill C: Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog, 4:e1000144, 2008. DOI: 10.1371/journal.ppat.1000144
  • 17. Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120, 2016. DOI: 10.1093/ bioinformatics/btu170
  • 18. Seemann T: Shovill, 2019. https://github.com/tseemann/shovill; Accessed: 12 July 2022.
  • 19. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29, 1072-1075, 2013. DOI: 10.1093/bioinformatics/btt086
  • 20. Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS: PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res, 44, 16-21, 2016. DOI: 10.1093/nar/gkw387
  • 21. Carattoli A, Zankari E, García-Fernández A, Larsen MV, Lund O, Villa L, Aarestrup FM, Hasman H: In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother, 58, 3895-3903, 2014. DOI: 10.1128/AAC.02412-14
  • 22. Moura A, Lefrancq N, Wirth T, Leclercq A, Borges V, Gilpin B, Dallman TJ, Frey J, Franz E, Nielsen EM, Thomas J, Pightling A, Howden BP, Tarr CL, Gerner-Smidt P, Cauchemez S, Salje H, Brisse S, Lecuit M: Emergence and global spread of Listeria monocytogenes main clinical clonal complex. Sci Adv, 7:eabj9805, 2021. DOI: 10.1126/sciadv. abj9805
  • 23. Papić B, Pate M, Félix B, Kušar D: Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol, 19, 1-13, 2019. DOI: 10.1186/s12866-019-1676-3
  • 24. Yin Y, Doijad S, Wang W, Lian K, Pan X, Koryciński I, Hu Y, Tan W, Ye S, Wang Z, Pan Z, Chakraborty T, Jiao X: Genetic diversity of Listeria monocytogenes isolates from invasive Listeriosis in China. Foodborne Pathog Dis, 17, 215-227, 2020. DOI: 10.1089/fpd.2019.2693
  • 25. Kuch A, Goc A, Belkiewicz K, Filipello V, Ronkiewicz P, Gołębiewska A, Wróbel I, Kiedrowska M, Waśko I, Hryniewicz W, Lomonaco S, Skoczyńska A: Molecular diversity and antimicrobial susceptibility of Listeria monocytogenes isolates from invasive infections in Poland (1997- 2013). Sci Rep, 8:14562, 2018. DOI: 10.1038/s41598-018-32574-0
  • 26. Steckler AJ, Cardenas-Alvarez MX, Ramsett MKT, Dyer N, Bergholz TM: Genetic characterization of Listeria monocytogenes from ruminant listeriosis from different geographical regions in the U.S. Vet Microbiol, 215, 93-97, 2018. DOI: 10.1016/j.vetmic.2017.12.021
  • 27. Šteingolde Ž, Meistere I, Avsejenko J, Ķibilds J, Bergšpica I, Streikiša M, Gradovska S, Alksne L, Roussel S, Terentjeva M, Bērziņš A: Characterization and genetic diversity of Listeria monocytogenes isolated from cattle abortions in Latvia, 2013-2018. Vet Sci, 8:195, 2021. DOI: 10.3390/vetsci8090195
  • 28. Painset A, Björkman JT, Kiil K, Guillier L, Mariet JF, Félix B, Amar C, Rotariu O, Perez-Reche F, Brisse S, Moura A, Lecuit M, Forbes K, Strachan N, Grant K, Møller-Nielsen E, Dallman TJ: LiSEQ-whole- genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb Genom, 5:e000257, 2019. DOI: 10.1099/mgen.0.000257
  • 29. Chen Y, Chen Y, Pouillot R, Dennis S, Xian Z, Luchansky JB, Porto- Fett ACS, Lindsay JA, Hammack TS, Allard M, Van Doren JM, Broen EW: Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010-2013 interagency Listeria monocytogenes market basket survey. PLoS One, 15:e0231393, 2020. DOI: 10.1371/journal.pone.0231393
  • 30. Lindén SK, Bierne H, Sabet C, Png CW, Florin TH, McGuckin MA, Cossart P: Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol, 190 (1): 101-114, 2008. DOI: 10.1007/s00203-008- 0358-6
  • 31. Martins M, Custódio R, Camejo A, Almeida MT, Cabanes D, Sousa S: Listeria monocytogenes triggers the cell surface expression of Gp96 protein and interacts with its N terminus to support cellular infection. J Biol Chem, 287 (51): 43083-43093, 2012. DOI: 10.1074/jbc.M112.422568
  • 32. Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R: Population structure of Non-ST6 Listeria monocytogenes isolated in the red meat and poultry value chain in South Africa. Microorganisms, 8 (8):1152, 2020. DOI: 10.3390/microorganisms8081152
  • 33. Hanes RM, Huang Z: Investigation of antimicrobial resistance genes in Listeria monocytogenes from 2010 through to 2021. Int J Environ Res Public Health, 19:5506, 2022. DOI: 10.3390/ijerph19095506
  • 34. Schmitz-Esser S, Anast JM, Cortes BW: A large-scale sequencing-based survey of plasmids in Listeria monocytogenes reveals global dissemination of plasmids. Front Microbiol, 12:653155, 2021. DOI: 10.3389/fmicb.2021.653155
  • 35. Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T: Comparative analysis of plasmids in the genus Listeria. PLoS One, 5:e12511, 2010. DOI: 10.1371/journal.pone.0012511
  • 36. McLauchlin J, Hampton MDD, Shah S, Threlfall EJJ, Wieneke AAA, Curtis GD: Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility. J Appl Microbiol, 83, 381- 388, 1997. DOI: 10.1046/j.1365-2672.1997.00238.x
  • 37. Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A: Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol, 58, 3183-3186, 1992. DOI: 10.1128/aem.58.9.3183-3186.1992
  • 38. Castro H, Douillard F, Korkeala H, Lindström M: Mobile elements harboring heavy metal and bacitracin resistance genes are common among Listeria monocytogenes strains persisting on dairy farms. mSsphere, 6 (4):e0038321, 2021. DOI: 10.1128/mSphere.00383-21
  • 39. Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON: Whole genome-based characterization of Listeria monocytogenes isolates recovered from the food chain in South Africa. Front Microbiol, 12:669287, 2021. DOI: 10.3389/fmicb.2021.669287
  • 40. Fortier LC, Sekulovic O: Importance of prophages to evolution and virulence of bacterial pathogens. Virulence, 4, 354-365, 2013. DOI: 10.4161/ viru.24498
  • 41. Brüssow H, Canchaya C, Hardt W, Bru H: Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev, 68, 560-602, 2004. DOI: 10.1128/MMBR.68.3.560- 602.2004
  • 42. Gelbicova T, Florianova M, Hluchanova, L, Kalova A, Korena K, Strakova N, Karpiskova R: Comparative analysis of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance in Listeria monocytogenes of human, food, and environmental origin. Front Microbiol, 11:599882, 2021. DOI: 10.3389/fmicb.2020.599882
  • 43. Kremer PH, Lees JA, Koopmans MM, Ferwerda B, Arends AW, Feller MM, Schipper K, Valls Seron M, van der Ende A, Brouwer MC, van de Beek D, Bentley SD: Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect, 23 (4):265, 2017. DOI: 10.1016/j.cmi.2016.12.008
  • 44. Maury MM, Bracq-Dieye H, Huang L, Vales G, Lavina M, Thouvenot P, Disson O, Leclercq A, Brisse S, Lecuit M: Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat Commun, 10:2488, 2019. DOI: 10.1038/s41467-019-10380-0
  • 45. Møretrø T, Schirmer BCT, Heir E, Fagerlund A, Hjemli P, Langsrud S: Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int Food Microbiol, 241, 215-224, 2017. DOI: 10.1016/j.ijfoodmicro.2016.10.025
  • 46. Daeschel D, Pettengill JB, Wang Y, Chen Y, Allard M, Snyder AB: Genomic analysis of Listeria monocytogenes from US food processing environments reveals a high prevalence of QAC efflux genes but limited evidence of their contribution to environmental persistence. BMC Genomics, 23:488, 2022. DOI: 10.1186/s12864-022-08695-2
APA ASLANTAŞ Ö, Buyukaltay K, KESKIN O, GÜLLÜ YÜCETEPE A, ADIGÜZEL A (2023). Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. , 221 - 230. 10.9775/kvfd.2023.28970
Chicago ASLANTAŞ Özkan,Buyukaltay Kaan,KESKIN Oktay,GÜLLÜ YÜCETEPE AYFER,ADIGÜZEL ADEM Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. (2023): 221 - 230. 10.9775/kvfd.2023.28970
MLA ASLANTAŞ Özkan,Buyukaltay Kaan,KESKIN Oktay,GÜLLÜ YÜCETEPE AYFER,ADIGÜZEL ADEM Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. , 2023, ss.221 - 230. 10.9775/kvfd.2023.28970
AMA ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. . 2023; 221 - 230. 10.9775/kvfd.2023.28970
Vancouver ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. . 2023; 221 - 230. 10.9775/kvfd.2023.28970
IEEE ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A "Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases." , ss.221 - 230, 2023. 10.9775/kvfd.2023.28970
ISNAD ASLANTAŞ, Özkan vd. "Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases". (2023), 221-230. https://doi.org/10.9775/kvfd.2023.28970
APA ASLANTAŞ Ö, Buyukaltay K, KESKIN O, GÜLLÜ YÜCETEPE A, ADIGÜZEL A (2023). Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 29(3), 221 - 230. 10.9775/kvfd.2023.28970
Chicago ASLANTAŞ Özkan,Buyukaltay Kaan,KESKIN Oktay,GÜLLÜ YÜCETEPE AYFER,ADIGÜZEL ADEM Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 29, no.3 (2023): 221 - 230. 10.9775/kvfd.2023.28970
MLA ASLANTAŞ Özkan,Buyukaltay Kaan,KESKIN Oktay,GÜLLÜ YÜCETEPE AYFER,ADIGÜZEL ADEM Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, vol.29, no.3, 2023, ss.221 - 230. 10.9775/kvfd.2023.28970
AMA ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2023; 29(3): 221 - 230. 10.9775/kvfd.2023.28970
Vancouver ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2023; 29(3): 221 - 230. 10.9775/kvfd.2023.28970
IEEE ASLANTAŞ Ö,Buyukaltay K,KESKIN O,GÜLLÜ YÜCETEPE A,ADIGÜZEL A "Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases." Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 29, ss.221 - 230, 2023. 10.9775/kvfd.2023.28970
ISNAD ASLANTAŞ, Özkan vd. "Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Food and Animal Clinical Cases". Kafkas Üniversitesi Veteriner Fakültesi Dergisi 29/3 (2023), 221-230. https://doi.org/10.9775/kvfd.2023.28970