Yıl: 2023 Cilt: 44 Sayı: 2 Sayfa Aralığı: 263 - 267 Metin Dili: İngilizce DOI: 10.17776/csj.1256954 İndeks Tarihi: 12-07-2023

Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells

Öz:
In this study, colchicine's cytotoxic effects on SNU-1 cells were examined, and a probable mechanism behind its cytotoxicity was revealed. According to the results of the study, colchicine displayed considerable cytotoxicity with an IC50 value of 14.81ng/ml when it was administered to the cells for 24 hours at different doses ranging from 5 to 100ng/ml. Furthermore, according to mechanistic studies, usege of colchicine significantly increased both early and late apoptotic cells in flow cytometry experiments. The late apoptotic cell population percentage in the control group (5.14 ± 1.27%) dramatically increased to 22.83 ± 1.38% in 14.81ng/ml colchicine treated cells. The early apoptotic cell population percentage in the control group (2.00 ± 1.12%) increased to 6.57 ± 2.35% in 14.81ng/ml colchicine treated cells. ELISA method was used to evaluate how colchicine affects the expression of pro- and anti-apoptotic proteins in SNU-1 cells. Colchicine treatment increased pro-apoptotic Bax and cleaved caspase 3 activities, while anti-apoptotic BCL-2 levels decreased. It is concluded that colchicine increases apoptosis in SNU-1 cells, which leads to an overall increase in cell death. Colchicine's promise as an anticancer drug to treat stomach cancer, however, needs additional research to be determined.
Anahtar Kelime: Gastric cancer Colchicine Antiproliferative effect Apoptozis.

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] A. R. Yusefi, K. Bagheri Lankarani, P. Bastani, M. Radinmanesh, and Z. Kavosi, Risk Factors for Gastric Cancer: A Systematic Review, Asian Pac. J. Cancer Prev., 19(3) (2018) 591–603.
  • [2] J. Machlowska, J. Baj, M. Sitarz, R. Maciejewski, and R. Sitarz, Molecular Sciences Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies, International J. of Molecular Sciences, 21(11) (2020) 4012.
  • [3] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, Estimates of worldwide burden of cancer in 2008, Int. J. Cancer, 127(12) (2010) 2893–2917.
  • [4] A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, Global patterns of cancer incidence and mortality rates and trends, Cancer Epidemiol. biomarkers Prev. a Publ. Am. Assoc. Cancer Res. cosponsored by Am. Soc. Prev. Oncol., 19(8) (2010) 1893–1907.
  • [5] X.-Y. Zhang, P.-Y. Zhang, Gastric cancer: somatic genetics as a guide to therapy., J. Med. Genet., 54(5) (2017) 305–312.
  • [6] J.-P. Gao, W. Xu, W.-T. Liu, M. Yan, and Z.-G. Zhu, Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell., World J. Gastroenterol., 24(24) (2018) 2567–2581.
  • [7] J. Y. Park, L. von Karsa, and R. Herrero, Prevention strategies for gastric cancer: a global perspective., Clin. Endosc., 47(6) (2014) 478–489.
  • [8] H. H. Hartgrink, E. P. M. Jansen, N. C. T. Van Grieken, and A. V. L. Hospital, HHS Public Access, 374(9688) (2015) 477–490.
  • [9] D. Roda, E. Rodrı, A. Cervantes, and S. Rosello, The treatment of advanced gastric cancer : current strategies and future perspectives, 19(Supplement 5) (2008) 103–107.
  • [10] H. Luo et al., Cetuximab enhances the effect of oxaliplatin on hypoxic gastric cancer cell lines, Oncology Reports, 23(6) (2010) 1735–1745.
  • [11] T. A. Bhat and R. P. Singh, Tumor angiogenesis - A potential target in cancer chemoprevention, Food Chem. Toxicol., 46(4) (2008) 1334–1345.
  • [12] S. Bhattacharya, A. Das, S. Datta, A. Ganguli, and G. Chakrabarti, Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: potential use of colchicine in combination with autophagy inhibitor in cancer therapy, Tumor Biol., 37(8) (2016) 10653–10664.
  • [13] Z. Huang, Y. Xu, and W. Peng, Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways, Mol. Med. Rep., 12(4) (2015) 5939–5944.
  • [14] I. Dudkiewicz, T. Brosh, M. Perelman, and M. Salai, Colchicine inhibits fracture union and reduces bone strength - In vivo study, J. Orthop. Res., 23(4) (2005) 877–881.
  • [15] Marshall M. Kaplan, Raoul Poupon, Treatment with immunosuppressives in patients with primary biliary cirrhosis who fail to respond to ursodiol, Hepatology, 50(2) (2009) 652.
  • [16] A. Kumar, B. Singh, P. R. Sharma, S. B. Bharate, A. K. Saxena, and D. M. Mondhe, A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT-116 colon cancer cells, Cell Biochem. Funct., 34(2) (2016) 69–81.
  • [17] G. C. Sun, H. H. Chen, W. Z. Liang, and C. R. Jan, Exploration of the effect of the alkaloid colchicine on Ca 2+ handling and its related physiology in human oral cancer cells, Arch. Oral Biol., 102(April) (2019) 179–185.
  • [18] A. Kumar, P. R. Sharma, and D. M. Mondhe, Potential anticancer role of colchicine-based derivatives: An overview, Anticancer. Drugs, 28(3) (2016) 250–262.
  • [19] J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008, Int. J. Cancer, 127(12) (2010) 2893–2917.
  • [20] J. P. Gao, W. Xu, W. T. Liu, M. Yan, and Z. G. Zhu, Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell, World J. Gastroenterol., 24(24) (2018) 2567–2581.
  • [21] O. Handa and Y. Naito, Prevention strategy for gastric cancer, Gastric Cancer With Spec. Focus Stud. from Japan, 1st ed. Japan, (2018) 193–201.
  • [22] M. A. Jordan and L. Wilson, “Microtubules and actin filaments: Dynamic targets for cancer chemotherapy, Curr. Opin. Cell Biol., 10(1) (1998) 123–130.
  • [23] M. A. Jordan and L. Wilson, Microtubules As a Target for Anticancer Drug, Nature Reviews Cancer, 4 (2004) 253-265.
  • [24] G. V Ronnett and C. Moon, G Proteins and Olfactory Signal Transduction, Annual Review of Physiology, 64(5) (2002) 189–222.
  • [25] E. K. Rowinsky and R. C. Donehower, The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics, Pharmacol. Ther., 52(1) (1991) 35–84.
  • [26] E. W. Taylor, The Mechanism of Colchicine Inhibition of Mitosis. I. Kinetics of Inhibition and the Binding of H3-Colchicine., J. Cell Biol., 25(1), (1965) 145–160.
  • [27] L. L. Fessler, Michael B.; Rudel, “基因的改变NIH Public Access, Bone, 23(1) (2011) 1–7.
  • [28] S. Bhattacharya, A. Das, S. Datta, A. Ganguli, and G. Chakrabarti, Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: potential use of colchicine in combination with autophagy inhibitor in cancer therapy, Tumor Biology, 37 (2016) 10653–10664
  • [29] Z. Y. Lin, C. C. Wu, Y. H. Chuang, and W. L. Chuang, Anti-cancer mechanisms of clinically acceptable colchicine concentrations on hepatocellular carcinoma, Life Sci., 93(8) (2013) 323–328.
  • [30] X. Zhu et al., Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma, Biomed. Pharmacother., 102(november) (2018) 502–509.
  • [31] A. Maryam, T. Mehmood, Q. Yan, Y. Li, M. Khan, and T. Ma, Proscillaridin A promotes oxidative stress and ER stress, inhibits STAT3 activation, and induces apoptosis in A549 lung adenocarcinoma cells, Oxid. Med. Cell. Longev., 2018 (2018) 1-17.
  • [32] Z. Chen, B. Zhang, F. Gao, and R. Shi, Modulation of G2/M cell cycle arrest and apoptosis by luteolin in human colon cancer cells and xenografts, Oncol. Lett., 15(2) (2018) 1559–1565.
  • [33] J. A. Hickman, Apoptosis and chemotherapy resistance, Eur. J. Cancer, 32(6) (1996) 921–926.
  • [34] B. A. Carneiro and W. S. El-Deiry, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. Oncol., 17(7) (2020) 395–417.
  • [35] G. C. Cavalcante et al., A cell’s fate: An overview of the molecular biology and genetics of apoptosis, Int. J. Mol. Sci., 20(17) (2019) 1–20.
  • [36] F. Bakar-Ates, E. Ozkan, and C. T. Sengel-Turk, Encapsulation of cucurbitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage, Int. J. Pharm., 586(April) (2020) 119565.
  • [37] R. Jan and G.-S. Chaudhry, Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics, Adv Pharm Bull, 2019(2) (2019) 205–218.
  • [38] R. C. Wang et al., Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents, PLoS One, 12(8) (2017) 1–22.
  • [39] Q. Guo et al., Ligand- and structural-based discovery of potential small molecules that target the colchicine site of tubulin for cancer treatment, Eur. J. Med. Chem., 196 (2020) 112328.
APA yulak f (2023). Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. , 263 - 267. 10.17776/csj.1256954
Chicago yulak fatih Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. (2023): 263 - 267. 10.17776/csj.1256954
MLA yulak fatih Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. , 2023, ss.263 - 267. 10.17776/csj.1256954
AMA yulak f Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. . 2023; 263 - 267. 10.17776/csj.1256954
Vancouver yulak f Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. . 2023; 263 - 267. 10.17776/csj.1256954
IEEE yulak f "Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells." , ss.263 - 267, 2023. 10.17776/csj.1256954
ISNAD yulak, fatih. "Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells". (2023), 263-267. https://doi.org/10.17776/csj.1256954
APA yulak f (2023). Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. Cumhuriyet Science Journal, 44(2), 263 - 267. 10.17776/csj.1256954
Chicago yulak fatih Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. Cumhuriyet Science Journal 44, no.2 (2023): 263 - 267. 10.17776/csj.1256954
MLA yulak fatih Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. Cumhuriyet Science Journal, vol.44, no.2, 2023, ss.263 - 267. 10.17776/csj.1256954
AMA yulak f Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. Cumhuriyet Science Journal. 2023; 44(2): 263 - 267. 10.17776/csj.1256954
Vancouver yulak f Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells. Cumhuriyet Science Journal. 2023; 44(2): 263 - 267. 10.17776/csj.1256954
IEEE yulak f "Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells." Cumhuriyet Science Journal, 44, ss.263 - 267, 2023. 10.17776/csj.1256954
ISNAD yulak, fatih. "Investigation of The Antiproliferative Effect of Colchicine on SNU-1 Gastric Cancer Cells". Cumhuriyet Science Journal 44/2 (2023), 263-267. https://doi.org/10.17776/csj.1256954