Yıl: 2023 Cilt: 7 Sayı: 1 Sayfa Aralığı: 101 - 106 Metin Dili: İngilizce DOI: 10.31015/jaefs.2023.1.11 İndeks Tarihi: 14-07-2023

Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants

Öz:
In this study, the cotyledon nodes of five safflower genotypes (Balcı, Linas, inbred lines 24, 25, and 55) were cultured for shoot regeneration via organogenesis in MS medium involving different TDZ (0.1, 0.5, and 1 mg L-1) and NAA (0, 0.2, and 0.5 mg L-1) doses. The highest rate of shoot forming calli was obtained from genotype 25 in all NAA and TDZ combinations, and there was no statistical difference between genotypes 24 and 25. The number of shoots per callus was found to be low in genotypes with a high rate of shoot forming calli. The maximum shoot number was obtained from the cultivar Linas on medium containing 1 mg L-1 TDZ, with 9.6 shoots/per callus and this value was followed by cultivar Balcı cultured at the same dose with 6.7 shoots/per callus. The rooting of safflower genotypes differed depending on the NAA content of the medium. Better rooting was achieved on medium with 2 mg L-1 NAA for Balcı, 1 mg L-1 NAA for Linas, and 0.1 mg L-1 NAA for genotypes 25 and 55. On the other hand, genotype 24 indicated rooting only on medium with 2 mg L-1 NAA, but it was very low. As a result; regeneration of safflower genotypes via callus-mediated organogenesis from cotyledonary explants was varied depending on TDZ and NAA doses, and many shoots were induced in Linas cultivar at 1 mg L-1 TDZ. However, the rooting of the regenerated shoots was quite low at different NAA doses.
Anahtar Kelime: Safflower Cotyledonary node In vitro regeneration TDZ NAA

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abd El-Lattief, E.A. (2012). Evaluation of 25 safflower genotypes for seed and oil yields under arid environment in upper Egypt. Asian Journal of Crop Science, 4(2): 72-79. Retrieved from https://scialert.net/abstract/?doi=ajcs.2012.72.79
  • Ali, N., Afrasiab, H. (2014). Effect of TIBA and other plant growth regulators on callogenic response from different explants of safflower ( Carthamus tinctorius). International Journal of Agriculture And Biology, 16: 1112-1116. Retrieved from http://www.fspublishers.org/published_papers/44391_.. pdf
  • Babaoglu, M., Guzel, M. (2015). Safflower (Carthamus tinctorius L.) breeding activities at Trakya Agricultural Research Institute. Ekin Journal of Crop Breeding and Genetics, 1(1): 20-25. Retrieved from https://dergipark.org.tr/tr/ download/article-file/211565
  • Baskaran, P., Rajeswari, B.R., Jayabalan, N. (2006). Development of an in vitro regeneration system in sorghum [ Sorghum bicolor (L.) Moench] using root transverse thin cell layers (tTCLs). Turkish Journal of Botany, 30: 1-9. Retrieved from https://journals.tubitak.gov.tr/botany/vol30/iss1/1/
  • Başalma, D., Uranbey, S., Mirici, S., Kolsarici, Ö. (2008). TDZ x IBA induced shoot regeneration from cotyledonary leaves and in vitro multiplication in safflower (Carthamus tinctorius L.). African Journal of Biotechnology, 8: 960- 966. Retrieved from https://www.ajol.info/index.php/ajb/ article/view/58585
  • Belide, S., Hac, L., Singh, S.P., Green, A.G., Wood, C.C. (2011). Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods, 7(1): 12. https://doi. org/10.1186/1746-4811-7-12
  • Bérvillé, A., Gressel, J., McPherson, M., Breton, C., Good, A., Médail, F., Pinatel, C. (2005). Issues of ferality or potential for ferality in oats, olives, the Vigna Group, Ryegrass Species, Safflower, and Sugarcane. In: Crop Ferality and Volunteerism, CRC Press, 231–255. Retrieved from https://www.taylorfrancis. com/chapters/mono/10.1201/9781420037999-18/ issues-ferality-potential-ferality-oats-olives-vigna-group- ryegrass-species-safflower-sugarcane-jonathan-gressel
  • Fan, L., Guo, M. (2013). Progress of safflower ( Carthamus tinctorius L.) regeneration through tissue culture. Journal of Medical Colleges of PLA, 28(5), 289–301. https://doi. org/10.1016/S1000-1948(13)60045-3
  • Ghasempour, H., Soheilikhah, Z., Zebarjadi, A.R., Ghasempour, S., Karimi, N. (2014). In vitro micro propagation, callus induction and shoot regeneration in safflower L. cv. Lesaf’. Iranian Journal of Plant Physiology, 4 (2): 999-1004. Retrieved from https://journals.iau.ir/article_540310_ fc3656ba47a7f941abfc499773945b81.pdf
  • Katkade, M.B., Syed, H.M., Andhale, R.R., Sontakke, M.D. (2018). Fatty acid profile and quality assessment of safflower (Carthamus tinctorius) oil. Journal of Pharmacognosy and Phytochemistry, 7(2): 3581-3585. Retrieved from https:// www.phytojournal.com/archives/2018/vol7issue2/ PartAX/7-2-364-260.pdf
  • Knowles, P.F. (1969). Centers of plant diversity and conservation of crop germplasm: Safflower. Economic Botany, 23: 324-349. Retrieved from https://link.springer.com/ article/10.1007/BF02860678
  • La Bella, S., Tuttolomondo, T., Lazzeri, L., Matteo, R., Leto, C., Licata, M. (2019). An Agronomic Evaluation of New Safflower (Carthamus tinctorius L.) Germplasm for Seed and Oil Yields under Mediterranean Climate Conditions. Agronomy, 9(8): 468. https://doi.org/10.3390/agronomy9080468
  • Liu, L., Guan, L.L., Yang, Y.X. (2016). A review of fatty acids and genetic characterization of safflower ( Carthamus tinctorius L.) seed oil. World Journal of Traditional Chinese Medicine, 2(2): 48-52. https://doi.org/10.15806/j.issn.2311- 8571.2016.0006
  • Mandal, A.K.A., Gupta, S.D. (2001). Direct shoot organogenesis and plant regeneration in safflower. In Vitro Cellular & Developmental Biology, Plant, 37(1): 50-54. Retrieved from http://www.jstor.org/stable/4293417
  • Mandal, A.K.A., Dutta Gupta, S. (2003). Somatic embryogenesis of safflower: influence of auxin and ontogeny of somatic embryos. Plant Cell, Tissue and Organ Culture, 72(1): 27- 31. https://doi.org/10.1023/a:1021264403398
  • Motamedi, J., Zebarjadi, A., Kahrizi, D., Salmanian, A.H. (2011). In vitro propagation and Agrobacterium-mediated transformation of safflower (Carthamus tinctorius L.) using a bacterial mutated aroA gene. Australian Journal of Crop Science, 5: 479-486. Retrieved from http://www.cropj.com/ zebarjadi_5_4_2011_479_486.pdf
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497. https://doi. org/10.1111/j.1399-3054.1962.tb08052.x
  • Nikhil, M., Dudhare, M.S., Jadhav, P.V., Moharil, M.P., Deshmukh, A.S. (2014). In vitro shoot regeneration and plantlet development in safflower ( Carthamus tinctorius L.). The Bioscan 9(2): 551-555.
  • Patial, V., Krishna, R., Arya, G., Singh, V. K., Agarwal, M., Goel, S., Jagannath, A., Kumar, A. (2016). Development of an efficient, genotype independent plant regeneration and transformation protocol using cotyledonary nodes in safflower ( Carthamus tinctorius L.). Journal of Plant Biochemistry and Biotechnology, 25(4): 421–432. https:// doi.org/10.1007/s13562-016-0354-x
  • Radhika, K., Sujatha, M., Nageshwar Rao, T. (2006). Thidiazuron stimulates adventitious shoot regeneration in different safflower explants. Biologia Plantarum, 50: 174-179. https://doi.org/10.1007/s10535-006-0003-7
  • Rajendra Prasad, B., Khadeer, M.A., Seeta, P., Anwar, S.Y. (1991). In vitro induction of androgenic haploids in Safflower (Carthamus tinctorius L.). Plant Cell Reports, 10: 48–51. https://doi.org/10.1007/BF00233032
  • Soheilikhah, Z., Karimi, N., Ghasmpour, H.R., Zebarjad, A.R. (2013). Effects of saline and mannitol induced stress on some biochemical and physiological parameters of Carthamus tinctorius L. varieties callus cultures. Australian Journal of Crop Science, 7(12): 1866-1874. Retrieved from http://www.cropj.com/karimi_7_12_2013_1866_1874.pdf
  • SriShilpa,K.,DineshKumar,V.,Sujatha,M.(2010). Agrobacterium- mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell, Tissue and Organ Culture, 103 (3): 387–401. https://doi.org/10.1007/s11240-010-9792-7
  • Sujatha M. (2007). Advances in safflower biotechnology. In: Functional Plant Science and Biotechnology. 1, Global Science Books, 160-170. Retrieved from http://www. globalsciencebooks.info/Online/GSBOnline/images/0706/ FPSB_1(1)/FPSB_1(1)160-170o.pdf
  • Walia, N., Kaur, A. Babbar, S.B. (2005). In vitro regeneration of a high oil-yielding variety of safflower ( Carthamus tinctorius var HUS-305). Journal of Plant Biochemistry and Biotechnology 14: 65–68. https://doi.org/10.1007/ BF03263229
  • Walia, N., Kaur, A., Babbar, S.B. (2007). Proliferation and differentiation from endosperms of Carthamus tinctorius. Biologia Plantarum, 51(4): 749–753. https://doi. org/10.1007/s10535-007-0153-2
  • Vijaya Kumar, J., Ranjitha Kumari, B.D., Castaño, E. (2008). Cyclic somatic embryogenesis and efficient plant regeneration from callus of safflower. Biologia Plantarum, 52(3): 429- 436. https://doi.org/10.1007/s10535-008-0087-3
  • Yang, J., Xiong, L.D., Li, T.H., Li, H.Y., Qu, Q., Fu, H.Q., Liu, X.M., Li, X.K. (2009). The effect of phytohormones on safflower regeneration plant. Zhong yao cai = Zhongyaocai = Journal of Chinese Medicinal Materials, 32(9): 1335-1338. PMID: 20034206. Retrieved from https://pubmed.ncbi.nlm. nih.gov/20034206/
APA AVCI S, Kaya M (2023). Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. , 101 - 106. 10.31015/jaefs.2023.1.11
Chicago AVCI Süleyman,Kaya Mehmet Demir Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. (2023): 101 - 106. 10.31015/jaefs.2023.1.11
MLA AVCI Süleyman,Kaya Mehmet Demir Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. , 2023, ss.101 - 106. 10.31015/jaefs.2023.1.11
AMA AVCI S,Kaya M Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. . 2023; 101 - 106. 10.31015/jaefs.2023.1.11
Vancouver AVCI S,Kaya M Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. . 2023; 101 - 106. 10.31015/jaefs.2023.1.11
IEEE AVCI S,Kaya M "Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants." , ss.101 - 106, 2023. 10.31015/jaefs.2023.1.11
ISNAD AVCI, Süleyman - Kaya, Mehmet Demir. "Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants". (2023), 101-106. https://doi.org/10.31015/jaefs.2023.1.11
APA AVCI S, Kaya M (2023). Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. International Journal of Agriculture, Environment and Food Sciences, 7(1), 101 - 106. 10.31015/jaefs.2023.1.11
Chicago AVCI Süleyman,Kaya Mehmet Demir Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. International Journal of Agriculture, Environment and Food Sciences 7, no.1 (2023): 101 - 106. 10.31015/jaefs.2023.1.11
MLA AVCI Süleyman,Kaya Mehmet Demir Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. International Journal of Agriculture, Environment and Food Sciences, vol.7, no.1, 2023, ss.101 - 106. 10.31015/jaefs.2023.1.11
AMA AVCI S,Kaya M Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. International Journal of Agriculture, Environment and Food Sciences. 2023; 7(1): 101 - 106. 10.31015/jaefs.2023.1.11
Vancouver AVCI S,Kaya M Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants. International Journal of Agriculture, Environment and Food Sciences. 2023; 7(1): 101 - 106. 10.31015/jaefs.2023.1.11
IEEE AVCI S,Kaya M "Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants." International Journal of Agriculture, Environment and Food Sciences, 7, ss.101 - 106, 2023. 10.31015/jaefs.2023.1.11
ISNAD AVCI, Süleyman - Kaya, Mehmet Demir. "Regeneration of safflower genotypes through callus mediated organogenesis using cotyledonary node explants". International Journal of Agriculture, Environment and Food Sciences 7/1 (2023), 101-106. https://doi.org/10.31015/jaefs.2023.1.11