Yıl: 2022 Cilt: 6 Sayı: 4 Sayfa Aralığı: 648 - 659 Metin Dili: İngilizce DOI: 10.31015/jaefs.2022.4.20 İndeks Tarihi: 14-07-2023

Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics

Öz:
The emergence of some physiological and fruit quality problems due to the common squash rootstocks used in watermelon has led researchers to search for alternative rootstocks sources. Exploitation of novel Citrullus germplasm such as citronmelon (Citrullus lanatus var. citroides) is an alternative to avoid these problems. In this study, rootstocks potential of auto and allotetraploid citrullus genotypes for watermelon were investigated as regard to plant growth and some physiological parameters under hyroponic conditions. Plant length was significantly affected by rootstock genotype and the longest plant stem was measured in watermelon plants grafted on N7-4T tetraploid rootstock (62.67 cm) while the shortest stem was measured in grafted plants onto autotetraploid Calhounn Gray with 14.33 cm. Among the graft combinations, N7-4T/CT (93.33 g) and CN7-5T/CT 95.00 g) graft combination produced the highest shoot fresh and dry weight. As in shoot fresh weight, the exploitationted on to tetraploid rootstock produced higher root fresh and dry weight than the plants grafted on diploid rootstocks and commercial rootstock. The highest root fresh and dry weight were determined in the plants grafted on to autotetraploid N5-4T and allotetraploid CN7-5T. Root characteristics were significantly affected by rootstock genotypes. The N, P, K and Ca contents of the leaves of the CT watermelon cultivar grafted on different rootstocks were significantly affected by the rootstocks. This study showed that citrullus tetraploid genotypes (auto and allo) to be produced by polyploidy method can be an important alternative rootstock source for watermelon.
Anahtar Kelime: Hydroponic culture Rootstock Scion Tetraploid Citron Watermelon

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Faostat. (2022). Agricultural Statistics. Retrieved 05/31/2022 from https://www.fao.org/faostat/en/#data/QCL
  • Albacete, A., MartÍnez-AndÚjar, C., Ghanem, M. E., Acosta, M., SÁnchez-Bravo, J., Asins, M. J., ... PÉrez-Alfocea, F. (2009). Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized to- mato. Plant, Cell & Environment, 32(7), 928–938. [CrossRef ]
  • Alexopoulos, A. A., Kondylis, Angelos., & Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to graf- ting. International Journal of Food, Agriculture and Environ- ment, 5, 178–179. [Google Scholar]
  • Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock-scion interactions. Scien- tia Horticulturae, 127(2), 119–126. [CrossRef ]
  • Amaro, A. C. E., Macedo, A. C., Ramos, A. R. P., Goto, R., Ono, E. O., & Rodrigues, J. D. (2014). The use of grafting to improve the net photosynthesis of cucumber. Theoretical and Expe- rimental Plant Physiology, 26(3–4), 241–249. [CrossRef ]
  • Aslam, A., Zhao, S., Azam, M., Lu, X., He, N., Li, B., ... Liu, W. (2020). Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pump - kin-grafted watermelon during fruit development. PeerJ, 8, e8259. [Google Scholar]
  • Aydın, A., Yetişir, H., Başak, H., Güngör, R., Şengöz, S., & Çetin, A. N. (2022). Investigation of appropriate grafting method and plant applications to increase grafting success in cu - cumber. International Journal of Agriculture, Environment and Food Sciences, 6(2), 275–284. [CrossRef ]
  • Chung, Y.-L., Kuo, Y.-T., & Wu, W.-L. (2017). Development of SSR markers in Phalaenopsis orchids, their characterization, cross-transferability and application for identification. In Orchid biotechnology III (pp. 91–107). World Scientific. [Google Scholar]
  • Corneillie, S., de Storme, N., van Acker, R., Fangel, J. U., de Bruy- ne, M., de Rycke, R., ... Boerjan, W. (2019). Polyploidy af - fects plant growth and alters cell wall composition. Plant Physiology, 179(1), 74–87. [Google Scholar]
  • Cushman, K. E., & Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genoty- pes: Yield and fruit quality under commercial growing con- ditions. Acta Horticulturae, 782, 335–341. [CrossRef ] del Pozo, J. C., & Ramirez Parra, E. (2014). Deciphering the mo - lecular bases for drought tolerance in A rabidopsis auto- tetraploids. Plant, Cell & Environment, 37(12), 2722–2737. [Google Scholar]
  • Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A. v, Nagy, B., ... Dobrev, P. (2016). Response of organ structure and phy- siology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiology, 170(3), 1504–1523. [Google Scholar]
  • Edelstein, M., Plaut, Z., & Ben-Hur, M. (2011). Sodium and chlo- ride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Bo- tany, 62(1), 177–184. [CrossRef ]
  • Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., & Co- hen, R. (2014). Horticultural evaluation of exotic waterme- lon germplasm as potential rootstocks. Scientia Horticultu- rae, 165, 196–202. [CrossRef ]
  • Fredes, A., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., Pé- rez-De-Castro, A., Gisbert, C., & Belén Picó, M. (2016). Fru- it quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agricul- ture, 97(5), 1646–1655. [CrossRef ]
  • Głowacka, K., Jeżowski, S., & Kaczmarek, Z. (2010). In vitro indu- ction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Industrial Crops and Products, 32(2), 88–96. [Google Scholar]
  • Gregory, P. J., Atkinson, C. J., Bengough, A. G., Else, M. A., Fer- nández-Fernández, F., Harrison, R. J., & Schmidt, S. (2013). Contributions of roots and rootstocks to sustainable, in - tensified crop production. Journal of Experimental Botany, 64(5), 1209–1222. [CrossRef ]
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricul- tural Experiment Station, 347(2nd edit). [Google Scholar]
  • Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M., & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve waterme- lon tolerance to low potassium stress. Scientia Horticultu- rae, 149, 80–85. [CrossRef ]
  • Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M., Xie, J., ... Bie, Z. (2016). Comprehensive Mineral Nutrition Analysis of Wa- termelon Grafted onto Two Different Rootstocks. Horticul- tural Plant Journal, 2(2), 105–113. [CrossRef ]
  • Kaseb, M., Umer, M. J., Gebremeskel, H., Mahmud, E., Diao, W., Yuan, P., ... He, N. (2020). Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Water- melon (Citrullus lanatus L.) Grafted by Branches. Preprints (Www.Preprints.Org). [CrossRef ]
  • Kasmiyati, S., Kristiani, E. B. E., & Herawati, M. M. (2020). Effect of induced polyploidy on plant growth, chlorophyll and fla - vonoid content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education, 12(1), 90–96. [Google Scholar]
  • Kim, Y.-S., Hahn, E.-J., Murthy, H. N., & Paek, K.-Y. (2004). Effect of polyploidy induction on biomass and ginsenoside accu- mulations in adventitious roots of ginseng. Journal of Plant Biology, 47(4), 356–360. [Google Scholar]
  • Lee, J.-M., & Oda, M. (2010). Grafting of Herbaceous Vegetab- le and Ornamental Crops. Horticultural Reviews , 61–124. [CrossRef ]
  • Levi, A., Thies, J. A., Wechter, P. W., Farnham, M., Weng, Y., & Has- sell, R. (2014). USVL-360, a Novel Watermelon Tetraploid Germplasm Line. HortScience, 49(3), 354–357. [CrossRef ]
  • Liu, N., Yang, J., Fu, X., Zhang, L., Tang, K., Malangisha Guy, K., ... Zhang, M. (2016). Genome-wide identification and comparative analysis of grafting-responsive mRNA in wa- termelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Molecular Genetics and Genomics, 291, 621–633. [CrossRef ]
  • Li, X., Yu, E., Fan, C., Zhang, C., Fu, T., & Zhou, Y. (2012). Deve- lopmental, cytological and transcriptional analysis of au- totetraploid Arabidopsis. Planta, 236(2), 579–596. [Google Scholar]
  • Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science, 7(OCTOBER2016), 1457. [CrossRef ]
  • Nisini, P. T., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccar- do, F. (2002). Rootstock resistance to fusarium wilt and ef - fect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93(3–4), 281–288. [Google Scholar]
  • Oda, M. (2002). Grafting of herbaceous vegetable and orna- mental crops. Horticultural Reviews, Volume 28 , 28, 61. [Google Scholar]
  • Ra, S. W., Yang, J. S., Ham, I. K., Moon, C. S., Woo, I. S., Hong, Y. K., & Roh, T. H. (1995). Effect of remaining potato stems on yield in grafting plants between mini-tomato and potato. RDA Journal of Agricultural Science (Korea Republic) , 37(2), 390–393. [Google Scholar]
  • Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1, 70–74. [Google Schol- ar]
  • Romero, L., Belakbir, A., Ragala, L., & Ruiz, J. M. (1997). Response of plant yield and leaf pigments to saline conditions: Effe- ctiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition , 43(4), 855–862. [CrossRef ]
  • Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Impro- ving melon and cucumber photosynthetic activity, mine - ral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks, 50(2), 180–188. [CrossRef ]
  • Sakata, Y., Ohara, T., & Sugiyama, M. (2007). The history and pre- sent state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticulturae, 731, 159–170. [CrossRef ]
  • Schwarz, D., Öztekin, G. B., Tüzel, Y., Brückner, B., & Krumbein, A. (2013). Rootstocks can enhance tomato growth and qua - lity characteristics at low potassium supply. Scientia Horti- culturae, 149, 70–79. [CrossRef ]
  • Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Graf- ting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollu - tants. Scientia Horticulturae, 127(2), 162–171. [CrossRef ]
  • Shimada, N., & Nakamura, K. (1977). Plant nutritional studies on the grafting of the garden crops. i. nutrient absorption by the grafted plants (watermelon, bottle gourd) from the culture solutions of several nutrient levels. Nippon Dojo- hiryogaku Zasshi. Journal of the Science of Soil and Manure, Japan. [Google Scholar]
  • Ulas, A., Doganci, E., Ulas, F., & Yetisir, H. (2019). Root-growth Characteristics Contributing to Genotypic Variation in Nit- rogen Efficiency of Bottle Gourd and Rootstock Potential for Watermelon. PLANTS-BASEL, 8(3). [CrossRef ]
  • Uygur, V., & Yetisir, H. (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of Plant Nutrition, 32(4), 629–643. [CrossRef ]
  • Yetisir, Halit, Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013a). Rootstocks effect on plant nutrition concentrati- on in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. [CrossRef ]
  • Yetisir, Halit, Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013b). Rootstocks effect on plant nutrition concentrati- on in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. [CrossRef ]
  • Yetişir, H., Kurt, fiener, Sari, N., & Tok, F. M. (2007). Rootstock Po- tential of Turkish Lagenaria siceraria Germplasm for Water- melon: Plant Growth, Graft Compatibility, and Resistance to Fusarium. Turk J Agric For, 31, 381–388. [Google Scholar]
  • Yetisir, H, & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Jour- nal of Experimental Agriculture, 43(10), 1269–1274. [Google Scholar]
  • Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., ... Xiong, J. (2019). Efficient characterization of tetraploid watermelon. Plants, 8(10), 419. [Google Scholar]
  • Zhong, Y. Q., & Bie, Z. L. (2007). Effects of grafting on the growth and quality of cucumber fruits. Acta Horticulturae, 761, 341–347. [CrossRef ]
APA Aydın A, YETİŞİR H, BAŞAK H, TURAN M, tuna m (2022). Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. , 648 - 659. 10.31015/jaefs.2022.4.20
Chicago Aydın Alim,YETİŞİR HALİT,BAŞAK HAKAN,TURAN Metin,tuna metin Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. (2022): 648 - 659. 10.31015/jaefs.2022.4.20
MLA Aydın Alim,YETİŞİR HALİT,BAŞAK HAKAN,TURAN Metin,tuna metin Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. , 2022, ss.648 - 659. 10.31015/jaefs.2022.4.20
AMA Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. . 2022; 648 - 659. 10.31015/jaefs.2022.4.20
Vancouver Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. . 2022; 648 - 659. 10.31015/jaefs.2022.4.20
IEEE Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m "Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics." , ss.648 - 659, 2022. 10.31015/jaefs.2022.4.20
ISNAD Aydın, Alim vd. "Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics". (2022), 648-659. https://doi.org/10.31015/jaefs.2022.4.20
APA Aydın A, YETİŞİR H, BAŞAK H, TURAN M, tuna m (2022). Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences, 6(4), 648 - 659. 10.31015/jaefs.2022.4.20
Chicago Aydın Alim,YETİŞİR HALİT,BAŞAK HAKAN,TURAN Metin,tuna metin Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences 6, no.4 (2022): 648 - 659. 10.31015/jaefs.2022.4.20
MLA Aydın Alim,YETİŞİR HALİT,BAŞAK HAKAN,TURAN Metin,tuna metin Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences, vol.6, no.4, 2022, ss.648 - 659. 10.31015/jaefs.2022.4.20
AMA Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences. 2022; 6(4): 648 - 659. 10.31015/jaefs.2022.4.20
Vancouver Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture, Environment and Food Sciences. 2022; 6(4): 648 - 659. 10.31015/jaefs.2022.4.20
IEEE Aydın A,YETİŞİR H,BAŞAK H,TURAN M,tuna m "Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics." International Journal of Agriculture, Environment and Food Sciences, 6, ss.648 - 659, 2022. 10.31015/jaefs.2022.4.20
ISNAD Aydın, Alim vd. "Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics". International Journal of Agriculture, Environment and Food Sciences 6/4 (2022), 648-659. https://doi.org/10.31015/jaefs.2022.4.20