Yıl: 2023 Cilt: 82 Sayı: 1 Sayfa Aralığı: 49 - 58 Metin Dili: İngilizce DOI: 10.26650/EurJBiol.2023.11240253 İndeks Tarihi: 21-07-2023

The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line

Öz:
Objective: Senescence may act as an antitumor mechanism by preventing the proliferation of cancer cells. Here we investigated the hypothesis that PC3 prostate cancer cells resistant to bortezomib respond differently to proteasomal inhibition with respect to induction of the senescence program as compared to the parental cells. Materials and Methods: The degree of senescence was measured by 𝛽-galactosidase activity and the level of senescence- associated p16 INK4a by Western blotting after treatment of cells with varying concentrations of bortezomib. In addition, the senescence-associated secretory phenotype was analyzed by Human Cytokine Antibody Array. Results: It is reported that the basal level of senescence was lower in resistant cells compared to non-resistant cells. It was found that the basal level of the senescence marker p16 INK4a was lower in bortezomib-resistant cells than in parent non-resistant cells. Moreover, p16 INK4a was significantly reduced in both cells under conditions of 100 nM bortezomib treatment, a finding suggesting that the reduced senescence after proteasomal inhibition was likely due to the reduced levels of p16 INK4a. Finally, it is reported here for the first time that basal levels of the proteins NAP2, FGF-6, MIP-3𝛼, and PARC are significantly increased in the resistant cells compared to the parental cells. Conclusion: Overall, the results suggest that inhibition of senescence may play an important function in the development of resistance to bortezomib.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Herranz N, Gil J. Mechanisms and functions of cellular senes- cence. J Clin Invest. 2018;128(4):1238-1246.
  • 2. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype.Front Cell Dev Biol. 2021 9:645593. doi: 10.3389/fcell.2021.645593
  • 3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next gener- ation. Cell. 2011;144(5):646-674.
  • 4. Bolden JE, Lowe SW. Cellular Senescence. In: The Molecular Ba- sis of Cancer. 4th edn. Edited by Mendelsohn J, Gray JW, Howley PM, Israel MA, Thompson CB. Philadelphia, PA: Elsevier Inc. 2014;229-238.
  • 5. Liu XL, Ding J, Meng LH. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin. 2018;39(10):1553-1558.
  • 6. Schwarze SR, Shi Y, Fu VX, Watson PA, Jarrard DF. Role of cyclin-dependent kinase inhibitors in the growth arrest at senes- cence in human prostate epithelial and uroepithelial cells. Onco- gene. 2001;20(57):8184-8192.
  • 7. Land H, Parada LF, Weinberg RA. Tumorigenic conversion of pri- mary embryo fibroblasts requires at least two cooperating onco- genes. Nature. 1983;304(5927): 596-602.
  • 8. Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res. 1991;196(1):33-39.
  • 9. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Onco- genic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593-602
  • 10. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998;12(19):3008-3019.
  • 11. Deschenes-Simard X, Gaumont-Leclerc MF, Bourdeau V, et al. Tumor suppressor activity of the ERK/MAPK pathway by promot- ing selective protein degradation. Genes Dev. 2013;27(8):900- 915.
  • 12. Deschenes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle. 2014;13(12):1840-1858.
  • 13. Hilt W, Wolf DH. Proteasomes: Destruction as a programme. Trends Biochem Sc. 1996;21(3):96-102.
  • 14. Leestemaker Y, Ovaa H. Tools to investigate the ubiquitin protea- some system. Discov Today Technol. 2017;26:25-31.
  • 15. Wu WK, Cho CH, Lee CW, et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010;293(1):15-22.
  • 16. Robak P, Robak T. Bortezomib for the treatment of hematologic malignancies: 15 Years Later. Drugs R D. 2019;19(2):73-92.
  • 17. Yerlikaya A, Yontem M. The significance of ubiquitin proteasome pathway in cancer development. Recent Pat Anticancer Drug Dis- cov. 2013;8(3):298-309.
  • 18. Aras B, Yerlikaya A. Bortezomib and etoposide combinations exert synergistic effects on the human prostate cancer cell line PC-3. Oncol Lett. 2016;11(5):3179-3184.
  • 19. Yerlikaya A, Altikat S, Irmak R, Cavga FZ, Kocacan SA, Boyaci I. Effect of bortezomib in combination with cisplatin and 5-fluorouracil on 4T1 breast cancer cells. Mol Med Rep. 2013;8(1):277-281.
  • 20. Yerlikaya A, Kanbur E. The ubiquitin-proteasome pathway and re- sistance mechanisms developed against the proteasomal inhibitors in cancer cells.Curr Drug Targets. 2020;21(13):1313-1325.
  • 21. Yerlikaya A, Okur E. An investigation of the mechanisms un- derlying the proteasome inhibitor bortezomib resistance in PC3 prostate cancer cell line. Cytotechnology. 2020;72(1):121-130.
  • 22. Guillon J, Petit C, Toutain B, Guette C, Lelievre E, Co- queret O. Chemotherapy-induced senescence, an adaptive mech-anism driving resistance and tumor heterogeneity. Cell Cycle .2019;18(19):2385-2397.
  • 23. Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers. 2020;12(8). doi: 10.3390/cancers12082134
  • 24. Coppe JP, Patil CK, Rodier F, et al. A human-like senescence- associated secretory phenotype is conserved in mouse cells de- pendent on physiological oxygen. PloS One. 2010;5(2):e9188. doi: 10.1371/journal.pone.0009188.
  • 25. Hinds P, Pietruska J. Senescence and tumor suppression. F1000Res. 2017;6:2121. doi: 10.12688/f1000research.11671.1.
  • 26. Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene- induced senescence relayed by an interleukin-dependent inflam- matory network. Cell. 2008;133(6):1019-1031.
  • 27. Sapochnik M, Fuertes M, Arzt E. Programmed cell senescence: role of IL-6 in the pituitary. J Mol Endocrinol. 2017;58(4):241- 253.
  • 28. Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29(2):25-38.
  • 29. McDermott M, Eustace AJ, Busschots S, et al. In vitro develop- ment of chemotherapy and targeted therapy drug-resistant can- cer cell lines: a practical guide with case studies. Front Oncol. 2014;4:40. doi: 10.3389/fonc.2014.00040.
  • 30. Yerlikaya A, Erin N. Differential sensitivity of breast cancer and melanoma cells to proteasome inhibitor Velcade. Int J Mol Med. 2008;22(6):817-823.
  • 31. Kanbur E, Baykal AT, Yerlikaya A. Molecular analysis of cell survival and death pathways in the proteasome inhibitor bortezomib-resistant PC3 prostate cancer cell line. Medical On- col. 2021;38(9):112. doi: 10.1007/s12032-021-01563-1.
  • 32. Yerlikaya A, Dokudur H. Investigation of the eIF2alpha phos- phorylation mechanism in response to proteasome inhibi- tion in melanoma and breast cancer cells. Mol Biol (Mosk). 2010;44(5):859-866.
  • 33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem. 1976;72:248-254.
  • 34. Park HH, Kim H, Park SY, et al. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti- tumor microenvironment. Mol Cancer. 2021;20(1):107. doi: 10.1186/s12943-021-01399-3.
  • 35. Yang L, Fang J, Chen J. Tumor cell senescence response pro- duces aggressive variants. Cell Death Discov. 2017;3:17049. doi: 10.1038/cddiscovery.2017.49.
  • 36. Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington SJ, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 though c-Jun-N-terminal kinase. J Cell Physiol. 2010;225(1):52-62.
  • 37. Wang RN, Green J, Wang Z, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1(1):87-105.
  • 38. Kim J, Kim YS, Ko J. CKbeta8/CCL23 and its isoform CKbeta8-1 induce up-regulation of cyclins via the G(i)/G(o) pro- tein/PLC/PKCdelta/ERK leading to cell-cycle progression. Cy- tokine. 2010;50(1):42-49.
  • 39. Gu JJ, Kaufman GP, Mavis C, Czuczman MS, Hernandez- Ilizaliturri FJ. Mitotic catastrophe and cell cycle arrest are alter- native cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells. Oncotarget. 2017;8(8):12741- 12753.
  • 40. Kretowski R, Borzym-Kluczyk M, Cechowska-Pasko M. Hy- poxia enhances the senescence effect of bortezomib–the pro- teasome inhibitor–on human skin fibroblasts. Biomed Res Int. 2014;196249. doi: 10.1155/2014/196249.
  • 41. Marcoux S, Le ON, Langlois-Pelletier C, et al. Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: a pilot study. Radiat Oncol. 2013;8:252. doi: 10.1186/1748-717X-8-252.
  • 42. Buckley S, Shi W, Driscoll B, Ferrario A, Anderson K, Warbur- ton D. BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol. 2004;286(1):81-86.
  • 43. Braumuller H, Wieder T, Brenner E, et al. T-helper- 1-cell cytokines drive cancer into senescence. Nature. 2013;494(7437):361-365.
  • 44. Rodriguez P, Pelletier J, Price GB, Zannis-Hadjopoulos M. NAP- 2: Histone chaperone function and phosphorylation state though the cell cycle. J Mol Biol. 2000;298(2):225-238.
  • 45. Guo F, Long L, Wang J, et al. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy. Oncology Lett. 2019;18(6):5699-5708.
  • 46. Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells though cytokine networks. Cancer Res 2011;71(2):614-624.
  • 47. Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61-71.
  • 48. Rani A, Dasgupta P, Murphy JJ. Prostate cancer: the role of inflam- mation and chemokines. Am J Patho.l 2019;189(11):2119-2137.
  • 49. Salazar N, Castellan M, Shirodkar SS, Lokeshwar BL. Chemokines and chemokine receptors as promoters of prostate cancer growth and progression. Crit Rev Eukaryot Gene Expr. 2013; 23(1): 77-91.
  • 50. Coutu DL, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY). 2011;3(10):920-933.
  • 51. Shang D, Sun D, Shi C, Xu J, Shen M, Hu X, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging Cell 2020;19(5):e13145. doi: 10.1111/acel.13145
  • 52. Struyf S, Schutyser E, Gouwy M, Gijsbers K, Proost P, Benoit Y, et al. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol 2003;163(5):2065-2075.
APA KANBUR E, SEKER S, BUDAK F, YERLİKAYA A (2023). The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. , 49 - 58. 10.26650/EurJBiol.2023.11240253
Chicago KANBUR Ertan,SEKER Semih,BUDAK Ferah,YERLİKAYA Azmi The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. (2023): 49 - 58. 10.26650/EurJBiol.2023.11240253
MLA KANBUR Ertan,SEKER Semih,BUDAK Ferah,YERLİKAYA Azmi The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. , 2023, ss.49 - 58. 10.26650/EurJBiol.2023.11240253
AMA KANBUR E,SEKER S,BUDAK F,YERLİKAYA A The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. . 2023; 49 - 58. 10.26650/EurJBiol.2023.11240253
Vancouver KANBUR E,SEKER S,BUDAK F,YERLİKAYA A The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. . 2023; 49 - 58. 10.26650/EurJBiol.2023.11240253
IEEE KANBUR E,SEKER S,BUDAK F,YERLİKAYA A "The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line." , ss.49 - 58, 2023. 10.26650/EurJBiol.2023.11240253
ISNAD KANBUR, Ertan vd. "The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line". (2023), 49-58. https://doi.org/10.26650/EurJBiol.2023.11240253
APA KANBUR E, SEKER S, BUDAK F, YERLİKAYA A (2023). The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. European Journal of Biology, 82(1), 49 - 58. 10.26650/EurJBiol.2023.11240253
Chicago KANBUR Ertan,SEKER Semih,BUDAK Ferah,YERLİKAYA Azmi The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. European Journal of Biology 82, no.1 (2023): 49 - 58. 10.26650/EurJBiol.2023.11240253
MLA KANBUR Ertan,SEKER Semih,BUDAK Ferah,YERLİKAYA Azmi The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. European Journal of Biology, vol.82, no.1, 2023, ss.49 - 58. 10.26650/EurJBiol.2023.11240253
AMA KANBUR E,SEKER S,BUDAK F,YERLİKAYA A The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. European Journal of Biology. 2023; 82(1): 49 - 58. 10.26650/EurJBiol.2023.11240253
Vancouver KANBUR E,SEKER S,BUDAK F,YERLİKAYA A The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line. European Journal of Biology. 2023; 82(1): 49 - 58. 10.26650/EurJBiol.2023.11240253
IEEE KANBUR E,SEKER S,BUDAK F,YERLİKAYA A "The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line." European Journal of Biology, 82, ss.49 - 58, 2023. 10.26650/EurJBiol.2023.11240253
ISNAD KANBUR, Ertan vd. "The Senescence Program is Reduced in Proteasome Inhibitor Bortezomib-Resistant PC3 Prostate Cancer Cell Line". European Journal of Biology 82/1 (2023), 49-58. https://doi.org/10.26650/EurJBiol.2023.11240253