Yıl: 2023 Cilt: 82 Sayı: 1 Sayfa Aralığı: 59 - 69 Metin Dili: İngilizce DOI: 10.26650/EurJBiol.2023.1279151 İndeks Tarihi: 21-07-2023

Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding

Öz:
Objective: Trichoderma genus are environmentally friendly, targeted biocontrol agents used in organic agriculture. Currently, due to the increasing number of organic farming practices, Trichoderma species form a good market as commercial biocontrol agents. This study aims to make morphological and molecular identification of Trichoderma isolates, which were found to be potential biocontrol agents against plant pathogenic fungi, and to perform phylogenetic diversity analyses of these species using different bioinformatics tools. Materials and Methods: Two different gene regions (the nuclear ribosomal internal transcribed spacer (ITS) and translation elon- gation factor 1 (EF) were used for molecular identification of Trichoderma isolates in this study. Polymerase Chain Reaction (PCR) related regions were amplified and sequenced using primers specific to these gene regions. Following molecular identifications based on these two different gene regions, phylogenetic trees were drawn and polymorphic regions in the nucleotide sequences of these genes were determined. Results: As a result of the study, Trichoderma isolates were determined as T. citrinoviride Bissett and T. atroviride P. Karst. at the species level. This study not only provides essential information about the biodiversity of Trichoderma species, which is a biocontrol agent, but also allows the design of new species-specific primers based on the polymorphic regions of both species. Conclusion: It will be possible to make fast and low-cost molecular identification independent of sequence analysis by using primers unique to these species in the future.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem. 2006; 54(19): 7047-7061.
  • 2. Degenkolb T, Dieckmann R, Nielsen KF, et al. The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog. 2008a; 7(3):177-219.
  • 3. Degenkolb T, Von Doehren H, Nielsen KF, Samuels GJ, Brück- ner H. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers. 2008b; 5(5):671-680.
  • 4. Maral D, Sozer S, Gezgin Y, et al. Evaluation of the properties of Trichoderma sp. isolates as a biocontrol agent and biofertilizer. Environ Eng Manag J. 2012; 11(3): S154.
  • 5. Sargin S, Gezgin Y, Eltem R, Vardar FA. Micropropagule pro- duction from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turk J Biol. 2013; 37(2):139-146.
  • 6. Gezgin Y, Gül DM, Şenşatar SS, Kara CU, Sargın S, Sukan FV. Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer. Turkish J Biochem. 2020; 45(2):163-175.
  • 7. Sharma A, Arya SK, Singh J, et al. Prospects of chitinase in sustainable farming and modern biotechnology: An update on recent progress and challenges. Biotechnol Genet Eng Rev. 2023; 1-31.
  • 8. Lyubenova A, Rusanova M, Nikolova M, Slavov SB. Plant ex- tracts and Trichoderma spp: possibilities for implementation in agriculture as biopesticides. Biotechnol Biotechnol Equip. 2023; 37(1):159-166.
  • 9. Salem SS. A mini review on green nanotechnology and its devel- opment in biological effects. Arch Microbiol. 2023; 205(4):128. https://doi.org/10.1007/s00203-023-03467-2.
  • 10. Barakat I, Chtaina N, El Kamli T, Grappin P, El Guilli M, Ezzahiri B. Bioactivity of Trichoderma harzianum A peptaibols against Zymoseptoria tritici causal agent of septoria leaf blotch of wheat. J Plant Prot Res. 2023; 63(1):59-67.
  • 11. John NS, Anjanadevi IP, Nath VS, et al. Characterization of Trichoderma isolates against Sclerotium rolfsii, the collar rot pathogen of Amorphophallus–A polyphasic approach. Biol Con- trol. 2015; 90:164-172.
  • 12. Chaverri P, Samuels GJ. Hypocrea/Trichoderma (ascomycota, hypocreales, hypocreaceae): species with green ascospores. Netherlands, N.L.: Centraalbureau voor Schimmelcultures (CBS); 2003: p1-35.
  • 13. Jaklitsch WM. European species of Hypocrea Part I. The green- spored species Stud Mycol. 2009; 63:1-91.
  • 14. Jaklitsch WM. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers. 2011; 48(1):1-250.
  • 15. Savitha MJ, Sriram S. Morphological and molecular identifica- tion of Trichoderma isolates with biocontrol potential against Phy- tophthora blight in red pepper. Pest Manage Hortic Ecosyst. 2015; 21(2);194-202.
  • 16. Siddiquee S. Morphology-based characterization of Trichoderma species. In: Practical handbook of the biology and molecular diversity of Trichoderma species from tropical regions. Fungal biology. Switzerland, C.H.: Springer International Publishing; 2017:41-73.
  • 17. Dou K, Lu Z, Wu Q. MIST: A multilocus identification system for Trichoderma. Appl Environ Microbiol. 2020; 86(18): e01532-20. https://doi.org/10.1128/AEM.01532-20.
  • 18. Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Bio- diversity of Trichoderma community in the tidal flats and wet- land of southeastern China. PLoS One. 2016; 11(12): e0168020. https://doi.org/10.1371/journal.pone.0168020.
  • 19. Srivastava M, Shahid M, Pandey S, et al. Trichoderma genome to genomics: A review. J Data Min Genom Proteom. 2014; 5(162). https://doi.org/10.4172/2153-0602.1000162.
  • 20. Kubicek CP, Steindorff AS, Chenthamara K, et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genom. 2019; 20:1-24.
  • 21. Kamil D, Prameela Devi T, Choudhary SP, Das A, Kumar A. Genome-mediated methods to unravel the native biogeographi- cal diversity and biosynthetic potential of Trichoderma for plant health. In Fungal diversity, ecology and control management, In: Rajpal VR, Singh I, Navi SS, eds. Fungal diversity, ecology and control management. Fungal biology, Singapore: SG: Springer Nature Singapore, 2022:109-124.
  • 22. Maheshwary NP, Naik BG, Chittaragi A, Morpho-molecular char- acterization, diversity analysis and antagonistic activity of Tricho- derma isolates against predominant soil born pathogens. Indian Phytopathol. 2022; 75(4): 1009-1020.
  • 23. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. J Appl Environ Microbiol. 2011; 77(15):5100-5109.
  • 24. Samuels GJ, Ismaiel A, Mulaw TB, et al., The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Divers. 2012; 55(1):77-108.
  • 25. Oskiera M, Szczech M, Bartoszewski G. Molecular identifica- tion of Trichoderma strains collected to develop plant growth- promoting and biocontrol agents. J Hortic Res. 2015; 23(1): 75–86.
  • 26. Kullnig-Gradinger CM, Szakacs G, Kubicek CP. Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res. 2002; 106(7):757-767.
  • 27. Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Héraud C, Steinberg C. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol. 2010; 114(9):691-701.
  • 28. Elad Y, Chet I, Henis Y. A selective medium for improving quan- titative isolation of Trichoderma spp. from soil. Phytoparasitica. 1981; 9:59-67.
  • 29. Howell CR. Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia. 1999; 91(6): 930-934.
  • 30. Gams W, Bissett J. Morphology and identification of Trichoderma and Gliocladium. In: Trichoderma and Gliocladium Volume 1, Basic biology, taxonomy and genetics. Eds. Kubicek CP, Harman GE, Bristol, BS: Taylor and Francis Ltd, Inc; 2002; 3-31.
  • 31. Samuels GJ. Trichoderma: A review of biology and systematics of the genus. Mycol Res. 1996; 100(8):923-935.
  • 32. Jaklitsch WM, Voglmayr H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol. 2015; 80:1-87.
  • 33. Liu D, Coloe S, Baird R, Pedersen J. Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol. 2000; 38(1):471-471.
  • 34. Van den Ende AH, De Hoog GS. Variability and molecular di- agnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol. 1999; 43:151-162.
  • 35. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999; 91(3):553-556.
  • 36. Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 2005; 97(6):1365-1378.
  • 37. The Basic Local Alignment Search Tool (BLAST) website, https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed May 03, 2023.
  • 38. Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP. An oligonucleotide barcode for species identifi- cation in Trichoderma and Hypocrea. Fungal Genet Biol. 2005; 42(10):813-828.
  • 39. Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS. Tri- choBLAST: A multilocus database for Trichoderma and Hypocrea identifications. Mycol Res. 2005; 109(6):658-660.
  • 40. Tamura K, Nei M. Estimation of the number of nucleotide sub- stitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993; 10(3):512-526.
  • 41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molec- ular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018; 35(6):1547-1549.
  • 42. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improv- ing the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673- 4680.
  • 43. Kuhls K, Lieckfeldt E, Samuels GJ, et al. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci. 1996; 93(15):7755-7760.
  • 44. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal in- ternal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci. 2012; 109(16):6241-6246.
  • 45. Ospina-Giraldo MD, Royse DJ, Chen X, Romaine CP. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology. 1999; 89(4):308-313.
  • 46. Skoneczny D, Oskiera M, Szczech M, Bartoszewski G. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol. 2015; 60(4):297-307.
  • 47. Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J. The Trichoderma harzianum demon: Complex speci- ation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Ecol Evol. 2010; 10(1):1-4.
  • 48. Hageskal G, Vrålstad T, Knutsen AK, Skaar ID. Exploring the species diversity of Trichoderma in Norwegian drinking water systems by DNA barcoding. Mol Ecol Resour. 2008; 8(6):1178- 1188.
  • 49. Fahmi AI, Eissa RA, El-Halfawi KA, Hamza HA, Helwa MS. Identification of Trichoderma spp. by DNA barcode and screen- ing for cellulolytic activity. J Microb Biochem Technol. 2016; 8(3):202-209.
  • 50. Saroj DB, Dengeti SN, Aher S, Gupta AK. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World J Microbiol Biotechnol. 2015; 31(6):995-999.
APA GEZGIN Y, GURALP G, BARLAS A, ELTEM R (2023). Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. , 59 - 69. 10.26650/EurJBiol.2023.1279151
Chicago GEZGIN Yuksel,GURALP Gulce,BARLAS Ayse Bercin,ELTEM Rengin Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. (2023): 59 - 69. 10.26650/EurJBiol.2023.1279151
MLA GEZGIN Yuksel,GURALP Gulce,BARLAS Ayse Bercin,ELTEM Rengin Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. , 2023, ss.59 - 69. 10.26650/EurJBiol.2023.1279151
AMA GEZGIN Y,GURALP G,BARLAS A,ELTEM R Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. . 2023; 59 - 69. 10.26650/EurJBiol.2023.1279151
Vancouver GEZGIN Y,GURALP G,BARLAS A,ELTEM R Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. . 2023; 59 - 69. 10.26650/EurJBiol.2023.1279151
IEEE GEZGIN Y,GURALP G,BARLAS A,ELTEM R "Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding." , ss.59 - 69, 2023. 10.26650/EurJBiol.2023.1279151
ISNAD GEZGIN, Yuksel vd. "Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding". (2023), 59-69. https://doi.org/10.26650/EurJBiol.2023.1279151
APA GEZGIN Y, GURALP G, BARLAS A, ELTEM R (2023). Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. European Journal of Biology, 82(1), 59 - 69. 10.26650/EurJBiol.2023.1279151
Chicago GEZGIN Yuksel,GURALP Gulce,BARLAS Ayse Bercin,ELTEM Rengin Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. European Journal of Biology 82, no.1 (2023): 59 - 69. 10.26650/EurJBiol.2023.1279151
MLA GEZGIN Yuksel,GURALP Gulce,BARLAS Ayse Bercin,ELTEM Rengin Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. European Journal of Biology, vol.82, no.1, 2023, ss.59 - 69. 10.26650/EurJBiol.2023.1279151
AMA GEZGIN Y,GURALP G,BARLAS A,ELTEM R Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. European Journal of Biology. 2023; 82(1): 59 - 69. 10.26650/EurJBiol.2023.1279151
Vancouver GEZGIN Y,GURALP G,BARLAS A,ELTEM R Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding. European Journal of Biology. 2023; 82(1): 59 - 69. 10.26650/EurJBiol.2023.1279151
IEEE GEZGIN Y,GURALP G,BARLAS A,ELTEM R "Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding." European Journal of Biology, 82, ss.59 - 69, 2023. 10.26650/EurJBiol.2023.1279151
ISNAD GEZGIN, Yuksel vd. "Morphological and Molecular Identification of Trichoderma Isolates Used as Biocontrol Agents by DNA Barcoding". European Journal of Biology 82/1 (2023), 59-69. https://doi.org/10.26650/EurJBiol.2023.1279151