Yıl: 2023 Cilt: 5 Sayı: 1 Sayfa Aralığı: 25 - 31 Metin Dili: İngilizce DOI: 10.51435/turkjac.1307391 İndeks Tarihi: 24-07-2023

Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines

Öz:
In the first part of this study, the synthesis and characterization of organosoluble 5-chloroquinolin-8-yloxy substituted iron(II) (2) and oxo-titanium (IV) phthalocyanines (3) are reported for the first time. These compounds have been characterized by elemental analysis, Fourier transform infrared, electronic spectroscopy, and mass spectra. Electrochemical behaviors of metal-free and cobalt phthalocyanines and further new types of iron and oxo-titanium phthalocyanines were investigated using electroanalytical methods, such as cyclic (CV) and square wave voltammetry (SWV). According to the electrochemical results, phthalocyanines by and large showed one-electron metal- and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. All in all, this study's results inevitably create a useful way to use them in possible future studies, which will particularly attempt to use the compound investigated in potential areas of use.
Anahtar Kelime: Iron Titanium Electrochemistry Redox-active

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] A. Suzuki, H. Okumura, Y. Yamasaki, T. Oku, Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes, Appl Surf Sci, 488, 2019, 586–596.
  • [2] J. Xu, W. Yang, R. Chen, The photovoltaic performance of highly asymmetric phthalocyanine-sensitized brookite-based solar cells, Optik, 200, 2020, 163413.
  • [3] B. Yıldız, E. Güzel, D. Akyüz, B.S. Arslan, A. Koca, M.K. Şener, Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells, Sol Energy, 191, 2019, 654–662.
  • [4] S. Kong, X. Wang, L. Bai, Y. Song, F. Meng, Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine, J Mol Liq, 288, 2019, 111012.
  • [5] J.A. Jiménez-Tejada, A. Romero, J. González, N.B. Chaure, A.N. Cammidge, I. Chambrier, A.K. Ray, M.J. Deen, Evolutionary Computation for Parameter Extraction of Organic Thin-Film Transistors Using Newly Synthesized Liquid Crystalline Nickel Phthalocyanine, Micromachines, 10, 2019, 683.
  • [6] E.M. Bauer, T. De Caro, P. Tagliatesta, M. Carbone, Unraveling The Real pigment composition of tattoo inks: the case of bi- components phthalocyanine based greens, Dyes Pigments, 167, 2019, 225–235.
  • [7] Y. Zhao, J. W. Ying, Q. Sun, M. R. Ke, B. Y. Zheng, J. D. Huang, A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy, Dyes Pigments, 172, 2020, 107834.
  • [8] Q. Li, Z. Sun, Q. Liang, M. Zhou, D. Sun, Novel tetrasubstituted zinc phthalocyanine-attapulgite composites for efficient catalytic oxidation of styrene with tert-butyl hydroperoxide as oxidant, Solid State Sci, 97, 2019, 106010.
  • [9] R. Bahluli, S. Keshipour, Microcrystalline cellulose modified with Fe(II)- and Ni(II)-phthalocyanines: Syntheses, characterizations, and catalytic applications, Polyhedron, 169, 2019, 176–182.
  • [10] H.S. Majumdar, A. Bandyopadhyay, A.J. Pal, Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative, Org Electron, 4, 2003, 39.
  • [11] M.P. Malathesh, N.Y.P. Kumara, B.S. Jilani, K.R.V. Reddy, Synthesis and Characterization of Tetra-Ganciclovir Cobalt (II) Phthalocyanine for Electroanalytical Applications of AA/DA/UA, Heliyon, 5, 2019, e01946.
  • [12] L.F. de Holanda, F.W.P. Ribeiro, C.P. Sousa, P.N. da S. Casciano, A.N. Correia, Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen, J Electroanal Chem, 772, 2016, 9–16.
  • [13] L.F. de Lima, C.C. Maciel, A.L. Ferreira, J.C. de Almeida, M. Ferreira, 2020. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nanocomposite film for tartrazine electrochemical sensing, Mater Lett, 262, 127186.
  • [14] E.O. Moiseeva, Y.B. Platonova, D.V. Konev, S.A. Trashin, L.G. Tomilova, Electrochemical and spectroelectrochemical properties of tetra-tert-butylphthalocyanine indium(III), Mendeleev Commun, 29, 2019, 212–214.
  • [15] F. Demir, H.Y. Yenilmez, A. Koca, Z.A. Bayır, Metallo- phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications, J Electroanal Chem, 832, 2019, 254–265.
  • [16] S.G. Feridun, E.B. Orman, Ü. Salan, A.R. Özkaya, M. Bulut, Synthesis, characterization, and electrochemical and in-situ spectroelectrochemical properties of novel peripherally and non- peripherally 7-oxy-3-(3,4-dimethoxyphenyl) coumarin substituted phthalocyanines, Dyes Pigments, 160, 2019, 315–327.
  • [17] T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines". In: Structure and Bonding: Functional Phthalocyanine Molecular Materials, Editors: D.M.P Mingos, 2010, Germany, Springer.
  • [18] A. Nas, H. Kantekin, A. Koca, Electrochemical and Spectroelectrochemical Analysis of 4-(4-(5-Phenyl-1,3,4- oxadiazole-2-yl)phenoxy)-Substituted Cobalt(II), Lead(II) and Metal-Free Phthalocyanines, Electroanal, 27, 2015, 1602–1609.
  • [19] A. Nas, Z. Biyiklioglu, S. Fandaklı, G. Sarkı, H. Yalazan, H. Kantekin, Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl) phenoxy) substituted cobalt, iron and manganese phthalocyanines: Synthesis and electrochemical analysis, Inorg Chim Acta, 466, 2017, 86–92.
  • [20] Ç.C. Koçak, A. Nas, H. Kantekin, Z. Dursun, Simultaneous determination of theophylline and caffeine on novel [Tetra-(5- chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode, Talanta. 184, 2018, 452–460.
  • [21] B.S. Jilani, M.P. Malathesh, C.D. Mruthyunjayachari, K.R.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study, Mater Chem Phys, 239, 2020, 121920.
  • [22] A. Nas, Ü. Demirbaş, M. Pişkin, M. Durmuş, H. Kantekin, The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8- yloxy substituents on peripheral sites, J Lumin, 145, 2014, 635–642.
  • [23] Perrin DD, Armarego WLF, Purification of laboratory chemicals, Oxford, 1989, New York, Pergamon.
  • [24] J.G. Young, W. Onyebuagu, Synthesis and characterization of di- disubstituted phthalocyanines, J Org Chem, 55, 1990, 2155–2159.
  • [25] D. Liang , W. Peng , Y. Wang, Solvent Stabilized Y Type Oxotitanium Phthalocyanine Photoconductive Nanoparticles: Preparation and Application in Single Layered Photoreceptors, Adv Mater, 24, 2012, 5249–5253.
  • [26] H. Zhu, H. Song, W. Zhao, Z. Peng, D. Liu, B. Di, L. Xing, H. Chen, Z. Huang, Y. Wang, K. Wu, Precursor Structures for Polymorphic Titanyl Phthalocyanine Crystal Phases on Au(111): A High- Resolution STM Study, J Phys Chem C, 123, 2019, 17390–17396.
  • [27] İ. Yalçın, H. Yanık, H.T. Akçay, İ. Değirmencioğlu, M. Durmuş, Photophysical and photochemical study on the tetra 4- isopropylbenzyloxy substituted phthalocyanines, J Lumin, 192, 2017, 739–744.
  • [28] İ. Ömeroğlu, Z. Bıyıklıoğlu, Synthesis and electrochemistry of phthalocyanines bearing [(3,4-dimethoxybenzyl)oxy] groups, Turk J Chem, 39, 2015, 347–358.
  • [29] D. Akyuz, T. Keleş, Z. Bıyıklıoğlu, A. Koca, Metallophthalocyanines Bearing Polymerizable {[5-({(1E)-[4- (Diethylamino)phenyl]methylene}amino)-1-naphthy1]oxy} Groups as Electrochemical Pesticide Sensor Electroanal, 29, 2017, 2913–2924.
  • [30] A. Aktaş, İ. Acar, Z. Bıyıklıoğlu, E.T. Saka, H. Kantekin, Synthesis, electrochemistry of metal-free, copper, titanium phthalocyanines and investigation of catalytic activity of cobalt, iron phthalocyanines on benzyl alcohol oxidation bearing 4-{2-[3- trifluoromethyl)phenoxy]ethoxy} groups, Synthetic Metals, 198, 2014, 212–220.
  • [31] Ö. Koyun. S. Gördük, B. Keskin, A. Çetinkaya, A. Koca, U. Avcıata, Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines bearing tetra terminal-alkynyl functionalities and click approach, Polyhedron, 113, 2016, 35–49.
  • [32] Ü. Demirbaş, D. Akyüz, A. Mermer, H.T. Akçay, N. Demirbaş, A. Koca, H. Kantekin, The electrochemical and spectroelectrochemical properties of metal free and metallophthalocyanines containing triazole/piperazine units, Spectrochim Acta Part:A Mol Biomol Spect, 153, 2016, 478–487.
APA Nas A, Dilber G, Bıyıklıoğlu Z (2023). Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. , 25 - 31. 10.51435/turkjac.1307391
Chicago Nas Asiye,Dilber Gülsev,Bıyıklıoğlu Zekeriya Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. (2023): 25 - 31. 10.51435/turkjac.1307391
MLA Nas Asiye,Dilber Gülsev,Bıyıklıoğlu Zekeriya Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. , 2023, ss.25 - 31. 10.51435/turkjac.1307391
AMA Nas A,Dilber G,Bıyıklıoğlu Z Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. . 2023; 25 - 31. 10.51435/turkjac.1307391
Vancouver Nas A,Dilber G,Bıyıklıoğlu Z Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. . 2023; 25 - 31. 10.51435/turkjac.1307391
IEEE Nas A,Dilber G,Bıyıklıoğlu Z "Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines." , ss.25 - 31, 2023. 10.51435/turkjac.1307391
ISNAD Nas, Asiye vd. "Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines". (2023), 25-31. https://doi.org/10.51435/turkjac.1307391
APA Nas A, Dilber G, Bıyıklıoğlu Z (2023). Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry (Online), 5(1), 25 - 31. 10.51435/turkjac.1307391
Chicago Nas Asiye,Dilber Gülsev,Bıyıklıoğlu Zekeriya Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry (Online) 5, no.1 (2023): 25 - 31. 10.51435/turkjac.1307391
MLA Nas Asiye,Dilber Gülsev,Bıyıklıoğlu Zekeriya Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry (Online), vol.5, no.1, 2023, ss.25 - 31. 10.51435/turkjac.1307391
AMA Nas A,Dilber G,Bıyıklıoğlu Z Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry (Online). 2023; 5(1): 25 - 31. 10.51435/turkjac.1307391
Vancouver Nas A,Dilber G,Bıyıklıoğlu Z Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry (Online). 2023; 5(1): 25 - 31. 10.51435/turkjac.1307391
IEEE Nas A,Dilber G,Bıyıklıoğlu Z "Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines." Turkish Journal of Analytical Chemistry (Online), 5, ss.25 - 31, 2023. 10.51435/turkjac.1307391
ISNAD Nas, Asiye vd. "Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines". Turkish Journal of Analytical Chemistry (Online) 5/1 (2023), 25-31. https://doi.org/10.51435/turkjac.1307391