Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi

Yıl: 2023 Cilt: 9 Sayı: 3 Sayfa Aralığı: 242 - 253 Metin Dili: Türkçe DOI: 10.3153/FH23022 İndeks Tarihi: 24-07-2023

Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi

Öz:
Fenolikler, oluşturduğu antioksidan kapasite sayesinde başta kanser olmak üzere, kardiyovasküler hastalıklar, hi- pertansiyon ve diyabet gibi birçok hastalığa karşı koruyucu etki göstermektedir. Böğürtlen yüksek fenolik madde içeriği sayesinde fonksiyonel gıda olarak anılmaktadır. Bu çalışmada, işlem görmemiş ve hidrostatik basınç uygu- lanmış (300 MPa veya 600 MPa) böğürtlen püresinden su, etanol, metanol ve bu çözücülerin asetik asit (%1) ya da hidroklorik asit (%1) eklenmiş formları kullanılarak ekstraktlar elde edilmiştir. Ardından 0.gün ve 7.gün fenolik madde içeriği, antioksidan kapasite ve renk değerleri belirlenmiştir. En yüksek fenolik madde içeriği ve antioksidan kapasite hidroklorik asit eklenmiş alkol ekstraksiyonu ile en düşük değerler ise su ekstraksiyonu ile elde edilmiştir. Hidroklorik asitin asetik asitten daha fazla fenolik madde ekstrakte ettiği ve antioksidan kapasiteyi artırdığı belir- lenmiştir. Fenolik madde miktarı yüksek örneklerde L* değerlerinin daha düşük a* ve b* değerlerinin ise daha yüksek olduğu bulunmuştur. İşlem görmemiş örnekler ile karşılaştırıldığında basıncın fenolik madde içeriği ve an- tioksidan kapasiteyi artırdığı belirlenmiştir (p<0.05). 600 MPa’nın etkisi asitlendirilmiş çözücü ortamında daha be- lirgindir. Fenolik madde içerikleri ile antioksidan ve renk değerleri arasında korelasyon tespit edilmiştir. Sonuç olarak, böğürtlen meyvesinin fonksiyonel özelliklerini arttırmak için hidroklorik asit eklenmiş etanol ortamında ekstraksiyon önerilmiştir.
Anahtar Kelime:

The influence of different pressure magnitudes and solvents on the functional properties and color stability of blackberry (Rubus plicatus L.) extracts

Öz:
Phenolics have a protective effect against many diseases, such as cancer, cardiovascular diseases, hypertension and diabetes, owing to the antioxidant capacity they form. Blackberries are known as a functional food due to their high phenolic content. In this study, the extracts were obtained from untreated and hydrostatic pressure (300 MPa or 600 MPa) treated blackberry puree using water, ethanol, methanol and acetic acid (1%) or hydrochloric acid (1%) added forms of these solvents. Then the phenolic content, antioxidant capacity and color values were determined on the 0th and 7th days. The highest phenolic content and antioxidant capacity were obtained with alcohol extraction with added hydrochloric acid, and the lowest values were obtained with water extraction. It was determined that hyd- rochloric acid extracted more phenolic substances than acetic acid and increased the antioxidant capacity. It was found that L* values were lower, a* and b* values were higher in samples with high phenolic content. Compared with the untreated samples, it was determined that the pressure increased the phenolic content and antioxidant capa- city (p<0.05). The effect of 600 MPa was found to be more pronounced in the presence of acid-added solvents. A correlation was detected between the phenolic contents, antioxidant capacities, and color values. As a result, extrac- tion in hydrochloric acid-added ethanol medium is recommended to increase the functional properties of blackberry fruit.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akhbari, M., Hamedi, S., Aghamiri, Z. (2019). Optimiza- tion of total phenol and anthocyanin extraction from the peels of eggplant (Solanum melongena L.) and biological activity of the extracts. Journal of Food Measurement and Characte- rization, 13(4), 3183-3197. https://doi.org/10.1007/s11694-019-00241-1
  • Albert, C., Codină, G.G., Héjja, M., András, C.D., Chetrariu, A., Dabija, A. (2022). Study of antioxidant acti- vity of garden blackberries (Rubus fruticosus L.) extracts ob- tained with different extraction solvents. Applied Sciences, 12(8), 4004. https://doi.org/10.3390/app12084004
  • Amakura, Y., Umino, Y., Tsuji, S., Tonogai, Y. (2000). Inf- luence of jam processing on the radical scavenging activity and phenolic content in berries. Journal of Agricultural and Food Chemistry, 48(12), 6292-6297. https://doi.org/10.1021/jf000849z
  • Anantharaju, P.G., Gowda, P.C., Vimalambike, M.G. ve Madhunapantula, S.V. (2016). An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Jo- urnal, 15(1), 99. https://doi.org/10.1186/s12937-016-0217-2
  • AOAC, (2004). Association of Official Analytical Chemists. Official Methods of Analysis (AOAC, Arlington, VA). Brand-Williams, W., Cuvelier, M.E. ve Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Buslig, B.S. (1992). Measurement of orange juice color with a 0/45 portable colorimeter. Proceedings of the Florida State Horticultural Society, 153-155.
  • Cao, X., Zhang, Y., Zhang, F., Wang, Y., Yi, J., Liao, X. (2011). Effects of high hydrostatic pressure on enzymes, phe- nolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food and Agri- culture, 91(5), 877-885. https://doi.org/10.1002/jsfa.4260
  • Casazza, A. A., Aliakbarian, B., Sannita, E., Perego, P. (2012). High-pressure high-temperature extraction of pheno- lic compounds from grape skins. International Journal of Food Science & Technology, 47(2), 399-405. https://doi.org/10.1111/j.1365-2621.2011.02853.x
  • Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., La- rondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purifica- tion Technology, 55(2), 217-225. https://doi.org/10.1016/j.seppur.2006.12.005
  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies, 9(1), 85-91. https://doi.org/10.1016/j.ifset.2007.06.002
  • Gómez-Maqueo, A., Welti-Chanes, J., Cano, M.P. (2020). Release mechanisms of bioactive compounds in fruits sub- mitted to high hydrostatic pressure: A dynamic microstructu- ral analysis based on prickly pear cells. Food Research Inter- national, 130, 108909. https://doi.org/10.1016/j.foodres.2019.108909
  • Guo, X., Han, D., Xi, H., Rao, L., Liao, X., Hu, X., Wu, J. (2012). Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate Polymers, 88(2), 441-448. https://doi.org/10.1016/j.carbpol.2011.12.026
  • Haminiuk, C.W.I., Maciel, G.M., Plata-Oviedo, M.S.V., Peralta, R.M. (2012). Phenolic compounds in fruits – an overview. International Journal of Food Science & Techno- logy, 47(10), 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
  • Huang, H.-W., Cheng, M.-C., Chen, B.-Y. ve Wang, C.-Y. (2019). Effects of high pressure extraction on the extraction yield, phenolic compounds, antioxidant and anti-tyrosinase activity of Djulis hull. Journal of Food Science and Techno- logy, 56(9), 4016-4024. https://doi.org/10.1007/s13197-019-03870-y
  • Huang, W.-Y., Cai, Y.-Z. ve Zhang, Y. (2009). Natural phe- nolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and Cancer, 62(1), 1-20. https://doi.org/10.1080/01635580903191585
  • Jiang, F., Dusting, G. J. (2003). Natural phenolic compo- unds as cardiovascular therapeutics: potential role of their an- tiinflammatory effects. Current Vascular Pharmacology, 1(2), 135-156. https://doi.org/10.2174/1570161033476736
  • Jiang, Y., Li, Y., Li, J. (2004). Browning control, shelf life extension and quality maintenance of frozen litchi fruit by hydrochloric acid. Journal of Food Engineering, 63(2), 147- 151. https://doi.org/10.1016/S0260-8774(03)00293-0
  • Karaaslan, M., Ozden, M., Vardin, H., Turkoglu, H. (2011). Phenolic fortification of yogurt using grape and callus extracts. LWT-Food Science and Technology, 44(4), 1065- 1072. https://doi.org/10.1016/j.lwt.2010.12.009
  • Kopjar, M., Orsolic, M., Pilizota, V. (2014). Anthocyanins, phenols, and antioxidant activity of sour cherry puree extracts and their stability during storage. International Journal of Food Properties, 17(6), 1393-1405. https://doi.org/10.1080/10942912.2012.714027
  • Lorzadeh, E., Heidary, Z., Mohammadi, M., Nadjarza- deh, A., Ramezani-Jolfaie, N., Salehi-Abargouei, A. (2022). Does pomegranate consumption improve oxidative stress? A systematic review and meta-analysis of randomized controlled clinical trials. Clinical Nutrition ESPEN, 47, 117- 127. https://doi.org/10.1016/j.clnesp.2021.11.017
  • Mello, B.C.B.S., Petrus, J.C.C., Hubinger, M.D. (2010). Concentration of flavonoids and phenolic compounds in aqu- eous and ethanolic propolis extracts through nanofiltration. Journal of Food Engineering, 96(4), 533-539. https://doi.org/10.1016/j.jfoodeng.2009.08.040
  • Navarro-Baez, J.E., Martínez, L.M., Welti-Chanes, J., Buitimea-Cantúa, G.V., Escobedo-Avellaneda, Z. (2022). High hydrostatic pressure to increase the biosynthesis and extraction of phenolic compounds in food: A review. Mole- cules, 27(5), 1502. https://doi.org/10.3390/molecules27051502
  • Oancea, S., Grosu, C., Ketney, O., Stoia, M. (2013). Con- ventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars. Acta Chimica Slovenica, 60(2), 383-389.
  • Osorio-Tobón, J.F. (2020). Recent advances and compari- sons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Techno- logy, 57(12), 4299-4315. https://doi.org/10.1007/s13197-020-04433-2
  • Oszmiański, J., Nowicka, P., Teleszko, M., Wojdyło, A., Cebulak, T., Oklejewicz, K. (2015). Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. International Journal of Molecular Sciences, 16(7), 14540- 14553. https://doi.org/10.3390/ijms160714540
  • Pinela, J., Prieto, M.A., Barros, L., Carvalho, A.M., Oli- veira, M.B.P.P., Saraiva, J.A., Ferreira, I.C.F.R. (2018). Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimiza- tion. Separation and Purification Technology, 192, 501-512. https://doi.org/10.1016/j.seppur.2017.10.007
  • Revilla, E., Ryan, J.-M., Martín-Ortega, G. (1998). Com- parison of several procedures used for the extraction of ant- hocyanins from red grapes. Journal of Agricultural and Food Chemistry, 46(11), 4592-4597. https://doi.org/10.1021/jf9804692
  • Robinson, J.A., Bierwirth, J.E., Greenspan, P. Pegg, R.B. (2020). Blackberry polyphenols: review of composition, qu- antity, and health impacts from in vitro and in vivo studies. Journal of Food Bioactives, 9, 40-51. https://doi.org/10.31665/JFB.2020.9217
  • Rodriguez-Mateos, A., Heiss, C., Borges, G., Crozier, A. (2014). Berry (poly)phenols and cardiovascular health. Jour- nal of Agricultural and Food Chemistry, 62(18), 3842-3851. https://doi.org/10.1021/jf403757g
  • Slinkard, K., Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49. https://doi.org/10.5344/ajev.1974.28.1.49
  • Soto, M., Acosta, O., Vaillant, F., Pérez, A. (2016). Effects of mechanical and enzymatic pretreatments on extraction of polyphenols from blackberry fruits. Journal of Food Process Engineering, 39(5), 492-500. https://doi.org/10.1111/jfpe.12240
  • Wahle, K.W.J., Brown, I., Rotondo, D., Heys, S.D. (2010). Plant Phenolics in the Prevention and Treatment of Cancer. Giardi, M. T., Rea, G., ve Berra, B. (eds) Bio-Farms for Nut- raceuticals: Functional Food and Safety Control by Biosen- sors. Boston, MA (Advances in Experimental Medicine and Biology), 36-51. https://doi.org/10.1007/978-1-4419-7347-4_4
  • Wrolstad, R., Skrede, G., Lea, P., Enersen, G. (2001). Extraction, isolation, and purification of anthocyanins. Cur- rent Protocols in Food Analytical Chemistry. https://doi.org/10.1002/0471142913.faf0101s00
  • Xi, J. (2006). Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chemical En- gineering & Technology, 29(6), 736-739. https://doi.org/10.1002/ceat.200600024
  • Xi, J., Shen, D., Zhao, S., Lu, B., Li, Y., Zhang, R. (2009). Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics, 382(1), 139-143. https://doi.org/10.1016/j.ijpharm.2009.08.023
APA D (2023). Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. , 242 - 253. 10.3153/FH23022
Chicago Duygu Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. (2023): 242 - 253. 10.3153/FH23022
MLA Duygu Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. , 2023, ss.242 - 253. 10.3153/FH23022
AMA D Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. . 2023; 242 - 253. 10.3153/FH23022
Vancouver D Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. . 2023; 242 - 253. 10.3153/FH23022
IEEE D "Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi." , ss.242 - 253, 2023. 10.3153/FH23022
ISNAD , Duygu. "Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi". (2023), 242-253. https://doi.org/10.3153/FH23022
APA D (2023). Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. Food and Health, 9(3), 242 - 253. 10.3153/FH23022
Chicago Duygu Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. Food and Health 9, no.3 (2023): 242 - 253. 10.3153/FH23022
MLA Duygu Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. Food and Health, vol.9, no.3, 2023, ss.242 - 253. 10.3153/FH23022
AMA D Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. Food and Health. 2023; 9(3): 242 - 253. 10.3153/FH23022
Vancouver D Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi. Food and Health. 2023; 9(3): 242 - 253. 10.3153/FH23022
IEEE D "Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi." Food and Health, 9, ss.242 - 253, 2023. 10.3153/FH23022
ISNAD , Duygu. "Farklı basınç büyüklükleri ve çözücülerin böğürtlen (Rubus plicatus L.) ekstraktlarının fonksiyonel özelliklerine ve renk stabilitesine etkisi". Food and Health 9/3 (2023), 242-253. https://doi.org/10.3153/FH23022