Yıl: 2023 Cilt: 33 Sayı: 2 Sayfa Aralığı: 147 - 155 Metin Dili: İngilizce DOI: 10.5152/pcp.2023.23633 İndeks Tarihi: 25-07-2023

Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria

Öz:
Neurodegeneration is a process leading to the progressive loss of structure and functions of neurons. Many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease have shown many common points at the subcellular level. Neurons are metabolically active cells and need a high amount of energy. Mitochondria are known as the energy synthesis center for cells, involved in the synthesis of adenosine triphosphate by oxidative phosphorylation. Rather than just being an energy synthesis center, it has critical importance for many cellular functions such as calcium homeostasis, cell proliferation, cell growth, and apoptosis. In the process of mitochondrial dysfunction, cellular functions are disrupted and cells enter the apoptotic or necrotic pathway. Resveratrol (tran s-3,5 ,4-tr ihydo xysti lbene ), a plant-derived polyphenol found in the seed of grapes, berries, peanuts, and wine, has many biological effects such as inhibition of lipid peroxidation, scavenging of free radicals, changes in eicosanoid synthesis, inhibition of platelet aggregation, anti-inflammatory and anticancer activity, and regulation of lipid metabolism. Through the reviewed literature, the current study investigated the protective role of resveratrol in neurodegenerative diseases. Studies show that resveratrol moderates mitochondrial function, redox status, and cellular dynamics in both in vivo and in vitro experimental models of neurodegeneration. Resveratrol suppresses reactive oxygen species production by reducing the activity of complex III due to its competition effect with coenzyme Q. In the present work, we discussed the protective effects of resveratrol on neurodegeneration, neurodegenerative diseases, and the redox biology of the mitochondria.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Peng C, Trojanowski JQ, Lee VMY. Protein transmission in neurodegenerative disease. Nat Rev Neurol. 2020;16(4):199-212. [CrossRef]
  • 2. Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. NeuroMolecular Med. 2008;10(4): 291-315. [CrossRef]
  • 3. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. [CrossRef]
  • 4. Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol Disord Drug Targets. 2018;17(3):207-215. [CrossRef]
  • 5. Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. NeuroMolecular Med. 2008;10(4):259- 274. [CrossRef]
  • 6. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta. 2016;1860(4):727-745. [CrossRef]
  • 7. Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med. 2015;2015:527209. [CrossRef]
  • 8. Jardim FR, de Rossi FT, Nascimento MX, et al. Resveratrol and brain mitochondria: A review. Mol Neurobiol. 2018;55(3):2085-2101. [CrossRef]
  • 9. Duchen MR. Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365-451. [CrossRef]
  • 10. Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620-650. [CrossRef]
  • 11. Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013: 956792. [CrossRef]
  • 12. Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145-169. [CrossRef]
  • 13. Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: Mechanisms involved in H2O2 signaling. Antioxid Redox Signal. 2011;14(3):459-468. [CrossRef]
  • 14. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122(1):55-68. [CrossRef]
  • 15. Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer's disease: Evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15(8): 857-868. [CrossRef]
  • 16. Walsh DM, Selkoe DJ. Aβ oligomers–a decade of discovery. J Neurochem. 2007;101(5):1172-1184. [CrossRef]
  • 17. Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017;57(4):975-999. [CrossRef]
  • 18. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057-9068. [CrossRef]
  • 19. Zhu X, Perry G, Smith MA, Wang X. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimers Dis. 2013;33(S1):S253-S262. [CrossRef]
  • 20. Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci. 2010;67(20):3435-3447. [CrossRef]
  • 21. Tillement L, Lecanu L, Papadopoulos V. Alzheimer's disease: Effects of β-amyloid on mitochondria. Mitochondrion. 2011;11(1):13-21. [CrossRef]
  • 22. Foffani G, Obeso JA. A cortical pathogenic theory of Parkinson’s disease. Neuron. 2018;99(6):1116-1128. [CrossRef]
  • 23. Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology. 2019;8(2):38. [CrossRef]
  • 24. Reeve AK, Park TK, Jaros E, et al. Relationship between mitochondria and α-synuclein: A study of single substantia nigra neurons. Arch Neurol. 2012;69(3):385-393. [CrossRef]
  • 25. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183-205. [CrossRef]
  • 26. Belin AC, Westerlund M. Parkinson’s disease: A genetic perspective. FEBS Journal. 2008;275(7):1377-1383. [CrossRef]
  • 27. Jamwal S, Kumar P. Antidepressants for neuroprotection in Huntington's disease: A review. Eur J Pharmacol. 2015;769:33-42. [CrossRef]
  • 28. Jodeiri Farshbaf M, Ghaedi K. Huntington’s disease and mitochondria. Neurotox Res. 2017;32(3):518-529. [CrossRef]
  • 29. Estaquier J, Arnoult D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 2007;14(6):1086-1094. [CrossRef]
  • 30. Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 2018;62(3):341-360. [CrossRef]
  • 31. Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab. 2006;4(5):349-362. [CrossRef]
  • 32. Muyderman H, Chen T. Mitochondrial dysfunction in amyotrophic lateral sclerosis–a valid pharmacological target? Br J Pharmacol. 2014;171(8):2191-2205. [CrossRef]
  • 33. Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C, Ceroni M. Amyotrophic lateral sclerosis and environmental factors. Funct Neurol. 2016;31(1):7-19. [CrossRef]
  • 34. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: A potential biomarker of disease burden. Neurology. 2004;62(10):1758-1765. [CrossRef]
  • 35. Liu J, Lillo C, Jonsson PA, et al. Toxicity of familial ALSlinked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron. 2004;43(1):5-17. [CrossRef]
  • 36. King RE, Bomser JA, Min DB. Bioactivity of resveratrol. Compr Rev Food Sci Food Saf. 2006;5(3):65-70. [CrossRef]
  • 37. Belguendouz L, Fremont L, Linard A. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins. Biochem Pharmacol. 1997;53(9):1347-1355. [CrossRef]
  • 38. Draczynska-Lusiak B, Doung A, Sun AY. Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer disease. Mol Chem Neuropathol. 1998;33(2):139-148. [CrossRef]
  • 39. Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res. 1999;25(2-3):87-97.
  • 40. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch Biochem Biophys. 2010;501(1):79- 90. [CrossRef]
  • 41. Ren Z, Wang L, Cui J, et al. Resveratrol inhibits NF-κB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie. 2013;68(8):689-694.
  • 42. Zhang LX, Li CX, Kakar MU, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother. 2021;143:112164. [CrossRef]
  • 43. Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297(1):H13-H20. [CrossRef]
  • 44. Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health–a comprehensive review of human clinical trials. Mol Nutr Food Res. 2011;55(8):1129-1141. [CrossRef]
  • 45. Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol. 2018;9:1261. [CrossRef]
  • 46. Wiedemann J, Rashid K, Langmann T. Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis. Biochem Biophys Res Commun. 2018;501(1):239-245. [CrossRef]
  • 47. Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. 2017;14(1):1. [CrossRef]
  • 48. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004;24(5A):2783-2840.
  • 49. Farhan M, Ullah MF, Faisal M, et al. Differential methylation and acetylation as the epigenetic basis of resveratrol's anticancer activity. Medicines (Basel) 2019;6(1):24. [CrossRef]
  • 50. Pallàs M, Casadesús G, Smith MA, et al. Resveratrol and neurodegenerative diseases: Activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res. 2009;6(1):70-81. [CrossRef]
  • 51. Wiciński M, Malinowski B, Węclewicz MM, Grześk E, Grześk G. Anti-atherogenic properties of resveratrol: 4-week resveratrol administration associated with serum concentrations of SIRT1, adiponectin, S100A8/A9 and VSMCs contractility in a rat model. Exp Ther Med. 2017;13(5):2071-2078. [CrossRef]
  • 52. Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383-1391. [CrossRef]
  • 53. Quincozes-Santos A, Gottfried C. Resveratrol modulates astroglial functions: Neuroprotective hypothesis. Ann N Y Acad Sci. 2011;1215(1):72-78. [CrossRef]
  • 54. Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol. 2009;29(8):1169-1180. [CrossRef]
  • 55. Lu KT, Ko MC, Chen BY, et al. Neurop rotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem. 2008;56(16): 6910-6913. [CrossRef]
  • 56. Khan MM, Ahmad A, Ishrat T, et al. Resveratrol attenuates 6-hyd roxyd opami ne-in duced oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Res. 2010;1328:139-151. [CrossRef]
  • 57. Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med. 2007;39(3):376- 384. [CrossRef]
  • 58. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605-608. [CrossRef]
  • 59. Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS Journal. 2015;282(11):2076-2088. [CrossRef]
  • 60. Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson's disease. Mov Disord. 2010;25:S32- S39. [CrossRef]
  • 61. Ferretta A, Gaballo A, Tanzarella P, et al. Effect of resveratrol on mitochondrial function: Implications in parkin- associated familiar Parkinson's disease. Biochim Biophys Acta. 2014;1842(7):902-915. [CrossRef]
  • 62. Kumar P, Padi SS, Naidu PS, Kumar A. Cyclooxygenase inhibition attenuates 3 nitropropionic acid induced neurotoxicity in rats: Possible antioxidant mechanisms. Fundam Clin Pharmacol. 2007;21(3):297-306. [CrossRef]
  • 63. Parker JA, Arango M, Abderrahmane SE, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37(4):349-350. [CrossRef]
  • 64. Zhou S, Kachhap S, Singh KK. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis. 2003;18(3):287-292. [CrossRef]
  • 65. Wang N, Luo Z, Jin M, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019;11(10):3117-3137. [CrossRef]
  • 66. Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. BioMed Res Int. 2014;2014:483501. [CrossRef]
  • 67. Higashida K, Kim SH, Jung SR, Asaka M, Holloszy JO, Han DH. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: A reevaluation. PLOS Biol. 2013;11(7):e1001603. [CrossRef]
  • 68. Zhao W, Varghese M, Yemul S, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6(1):51. [CrossRef]
  • 69. Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169-3179. [CrossRef]
  • 70. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem Soc Trans. 2007;35(5):1156-1160. [CrossRef]
  • 71. Li DD, Han RM, Liang R, et al. Hydroxyl radical reaction with trans-resveratrol: Initial carbon radical adduct formation followed by rearrangement to phenoxyl radical. J Phys Chem B. 2012;116(24):7154-7161. [CrossRef]
  • 72. Rüweler M, Gülden M, Maser E, Murias M, Seibert H. Cytotoxic, cytoprotective and antioxidant activities of resveratrol and analogues in C6 astroglioma cells in vitro. Chem Biol Interact. 2009;182(2-3):128-135. [CrossRef]
  • 73. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A. 1997;94(25):14138-14143. [CrossRef] 74. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose Response. 2010;8(4):478-500. [CrossRef]
  • 75. Brown VA, Patel KR, Viskaduraki M, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70(22):9003-9011. [CrossRef]
  • 76. Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. N Y Acad Sci. 2011;1215:161-169. [CrossRef]
  • 77. Bode LM, Bunzel D, Huch M, et al. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr. 2013;97(2):295-309. [CrossRef]
  • 78. Calvo-Castro LA, Schiborr C, David F, et al. The oral bioavailability of trans-resveratrol from a grapevineshoot extract in healthy humans is significantly increased by micellar solubilization. Mol Nutr Food Res. 2018;62(9):e1701057. [CrossRef]
APA Danışman B, ercan s, Aslan M (2023). Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. , 147 - 155. 10.5152/pcp.2023.23633
Chicago Danışman Betül,ercan sevim,Aslan Mutay Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. (2023): 147 - 155. 10.5152/pcp.2023.23633
MLA Danışman Betül,ercan sevim,Aslan Mutay Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. , 2023, ss.147 - 155. 10.5152/pcp.2023.23633
AMA Danışman B,ercan s,Aslan M Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. . 2023; 147 - 155. 10.5152/pcp.2023.23633
Vancouver Danışman B,ercan s,Aslan M Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. . 2023; 147 - 155. 10.5152/pcp.2023.23633
IEEE Danışman B,ercan s,Aslan M "Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria." , ss.147 - 155, 2023. 10.5152/pcp.2023.23633
ISNAD Danışman, Betül vd. "Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria". (2023), 147-155. https://doi.org/10.5152/pcp.2023.23633
APA Danışman B, ercan s, Aslan M (2023). Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry and clinical psychopharmacology (Online), 33(2), 147 - 155. 10.5152/pcp.2023.23633
Chicago Danışman Betül,ercan sevim,Aslan Mutay Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry and clinical psychopharmacology (Online) 33, no.2 (2023): 147 - 155. 10.5152/pcp.2023.23633
MLA Danışman Betül,ercan sevim,Aslan Mutay Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry and clinical psychopharmacology (Online), vol.33, no.2, 2023, ss.147 - 155. 10.5152/pcp.2023.23633
AMA Danışman B,ercan s,Aslan M Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry and clinical psychopharmacology (Online). 2023; 33(2): 147 - 155. 10.5152/pcp.2023.23633
Vancouver Danışman B,ercan s,Aslan M Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry and clinical psychopharmacology (Online). 2023; 33(2): 147 - 155. 10.5152/pcp.2023.23633
IEEE Danışman B,ercan s,Aslan M "Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria." Psychiatry and clinical psychopharmacology (Online), 33, ss.147 - 155, 2023. 10.5152/pcp.2023.23633
ISNAD Danışman, Betül vd. "Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria". Psychiatry and clinical psychopharmacology (Online) 33/2 (2023), 147-155. https://doi.org/10.5152/pcp.2023.23633