Yıl: 2023 Cilt: 27 Sayı: 4 Sayfa Aralığı: 1366 - 1379 Metin Dili: İngilizce DOI: 10.29228/jrp.424 İndeks Tarihi: 28-07-2023

Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors

Öz:
The Class III histone deacetylases protein Sirt2 has been implicated in the pathogenesis of several agerelated diseases such as inflammation, cancer, and type II diabetes and is considered an attractive novel therapeutic target. High-quality small-molecule inhibitors of Sirt2 are vital as chemical probes for target validation and potential starting points for new therapeutics. We applied an iterative virtual screening campaign including structure-based pharmacophore generation, ensemble docking, and protein-ligand interaction fingerprint analysis, to identify potential Sirt2 inhibitors from commercially available chemical libraries. Several hit molecules were determined to make exceptional interactions both with the catalytic (C) pocket and selective extended C pocket (EXC) pocket at the same time which indicated that these compounds represent promising lead structures for the development of selective and potent Sirt2 inhibitors.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012; 11(6): 443-461. https://doi.org/10.1038/nrd3738.
  • [2] Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012; 13(4): 225-238. https://doi.org/10.1038/nrm3293.
  • [3] Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55:100961. https://doi.org/10.1016/j.arr.2019.100961.
  • [4] Rumpf T, Gerhardt S, Einsle O, Jung M. Seeding for sirtuins: microseed matrix seeding to obtain crystals of human Sirt3 and Sirt2 suitable for soaking. Acta Crystallogr F Struct Biol Commun. 2015;71(Pt 12):1498-1510. https://doi.org/10.1107/s2053230x15019986.
  • [5] Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev. 2018;38(1):147-200. https://doi.org/10.1002/med.21436.
  • [6] Macalino SJ, Gosu V, Hong S, Choi S. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015;38(9):1686-1701. https://doi.org/10.1007/s12272-015-0640-5.
  • [7] Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273-343. https://doi.org/10.1016/bs.pmch.2021.01.004.
  • [8] Wong CF. Flexible receptor docking for drug discovery. Expert Opin Drug Discov. 2015;10(11):1189- 1200. https://doi.org/10.1517/17460441.2015.1078308.
  • [9] Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao Y, Smith JC. Ensemble Docking in Drug Discovery. Biophys J. 2018;114(10):2271-2278. https://doi.org/10.1016/j.bpj.2018.02.038.
  • [10] Van Drie JH. Monty Kier and the origin of the pharmacophore concept. Internet Electron J Mol Des. 2007; 6(9): 271-279.
  • [11] Wermuth CG, Robin Ganellin C, Lindberg P, Mitscher LA. Chapter 36 - Glossary of Terms Used in Medicinal Chemistry (IUPAC Recommendations 1997). In Annual Reports in Medicinal Chemistry, Bristol, J. A. Ed.; Vol. 33; Academic Press, 1998; pp 385-395.
  • [12] Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010; 15 (11-12): 444-450. https://doi.org/10.1016/j.drudis.2010.03.013.
  • [13] Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000; 44 (1): 235-249. https://doi.org/10.1016/s1056-8719(00)00107-6.
  • [14] Chen YC. Beware of docking! Trends Pharmacol Sci. 2015; 36 (2): 78-95. https://doi.org/10.1016/j.tips.2014.12.001.
  • [15] de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem. 2016; 9: 1-11. https://doi.org/10.2147/AABC.S105289.
  • [16] Bolcato G, Cuzzolin A, Bissaro M, Moro S, Sturlese M. Can We Still Trust Docking Results? An Extension of the Applicability of DockBench on PDBbind Database. Int J Mol Sci. 2019;20(14):3558. https://doi.org/10.3390/ijms20143558.
  • [17] Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem. 2011;32(4):742-755. https://doi.org/10.1002/jcc.21643.
  • [18] Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model. 2009;49(4):1079-1093. https://doi.org/10.1021/ci9000053.
  • [19] Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem. 2004;47(1):45-55. https://doi.org/10.1021/jm030209y.
  • [20] Leach AR, Shoichet BK, Peishoff CE. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem. 2006;49(20):5851-5855. https://doi.org/10.1021/jm060999m.
  • [21] Sutherland JJ, Nandigam RK, Erickson JA, Vieth M. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model. 2007;47(6):2293- 2302. https://doi.org/10.1021/ci700253h.
  • [22] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-1749. https://doi.org/10.1021/jm0306430.
  • [23] Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750-1759. https://doi.org/10.1021/jm030644s.
  • [24] Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49(21):6177-6196. https://doi.org/10.1021/jm051256o.
  • [25] Robaa D, Wagner T, Luise C, Carlino L, McMillan J, Flaig R, Schüle R, Jung M, Sippl W. Identification and Structure-Activity Relationship Studies of Small-Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. ChemMedChem. 2016;11(20):2327-2338. https://doi.org/10.1002/cmdc.201600362.
  • [26] Molecular Operating Environment (MOE), 2019 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.
  • [27] Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719- 2740. https://doi.org/10.1021/jm901137j.
  • [28] Walters WP, Murcko MA. Prediction of 'drug-likeness'. Adv Drug Deliv Rev. 2002;54(3):255- 271. https://doi.org/10.1016/s0169-409x(02)00003-0.
  • [29] https://www.asinex.com/screening-libraries-(all-libraries).
  • [30] https://chembridge.com/screening-compounds/lead-like-drug-like-compounds/#.
  • [31] https://www.chemdiv.com/catalog/complete-list-of-compounds-libraries/.
  • [32] https://enamine.net/compound-collections/screening-collection.
  • [33] Da C, Kireev D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model. 2014;54(9):2555- 2561. https://doi.org/10.1021/ci500319f.
  • [34] Yuan H, Marmorstein R. Structural basis for sirtuin activity and inhibition. J Biol Chem. 2012 Dec 14;287(51):42428-35. https://doi.org/10.1074/jbc.r112.372300.
  • [35] Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model. 2010;50(4):572-584. https://doi.org/10.1021/ci100031x.
APA MAYACK B, ALAYOUBI M (2023). Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. , 1366 - 1379. 10.29228/jrp.424
Chicago MAYACK Berin KARAMAN,ALAYOUBI Muhammed Moyasar Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. (2023): 1366 - 1379. 10.29228/jrp.424
MLA MAYACK Berin KARAMAN,ALAYOUBI Muhammed Moyasar Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. , 2023, ss.1366 - 1379. 10.29228/jrp.424
AMA MAYACK B,ALAYOUBI M Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. . 2023; 1366 - 1379. 10.29228/jrp.424
Vancouver MAYACK B,ALAYOUBI M Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. . 2023; 1366 - 1379. 10.29228/jrp.424
IEEE MAYACK B,ALAYOUBI M "Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors." , ss.1366 - 1379, 2023. 10.29228/jrp.424
ISNAD MAYACK, Berin KARAMAN - ALAYOUBI, Muhammed Moyasar. "Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors". (2023), 1366-1379. https://doi.org/10.29228/jrp.424
APA MAYACK B, ALAYOUBI M (2023). Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. Journal of research in pharmacy (online), 27(4), 1366 - 1379. 10.29228/jrp.424
Chicago MAYACK Berin KARAMAN,ALAYOUBI Muhammed Moyasar Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. Journal of research in pharmacy (online) 27, no.4 (2023): 1366 - 1379. 10.29228/jrp.424
MLA MAYACK Berin KARAMAN,ALAYOUBI Muhammed Moyasar Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. Journal of research in pharmacy (online), vol.27, no.4, 2023, ss.1366 - 1379. 10.29228/jrp.424
AMA MAYACK B,ALAYOUBI M Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. Journal of research in pharmacy (online). 2023; 27(4): 1366 - 1379. 10.29228/jrp.424
Vancouver MAYACK B,ALAYOUBI M Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors. Journal of research in pharmacy (online). 2023; 27(4): 1366 - 1379. 10.29228/jrp.424
IEEE MAYACK B,ALAYOUBI M "Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors." Journal of research in pharmacy (online), 27, ss.1366 - 1379, 2023. 10.29228/jrp.424
ISNAD MAYACK, Berin KARAMAN - ALAYOUBI, Muhammed Moyasar. "Pharmacophore-based Virtual Screening: Identification of Selective Sirtuin 2 Inhibitors". Journal of research in pharmacy (online) 27/4 (2023), 1366-1379. https://doi.org/10.29228/jrp.424