Yıl: 2023 Cilt: 32 Sayı: 4 Sayfa Aralığı: 447 - 469 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1855 İndeks Tarihi: 31-07-2023

Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey

Öz:
The Bitlis-Zagros Fold-Thrust Belt is one of the world’s largest deformation zones, extending from the Eastern Mediterranean in southern Turkey to in the south of Iran. This deformation zone is partitioned between different structures; however, little is known about the relative activities of these different structures and their effects on topography. An area located in the northern part of Bitlis- Zagros Fold-Thrust Belt, just south of the Eastern Anatolian Plateau was studied in detail to analyze the effect of active tectonism on topographic development. The effects of active deformation structures such as Hakkâri and Şirvan Fault Segments on the topographic evolution of Kato Folds and Sinebel Valley were investigated to understand the fold and thrust fault activity. Geomorphic indices were used, such as HC, HI, SR, Ksn together with rose analysis based on bedding measurements. Investigation of folding in the region indi- cates the effective stress regime in the precollision zone was in NW-SE compression direction. The deformation structures, effective in the postcollision zone developed due to N-S directional compression, and are shown here to have different effects on topography of the region. This study has shown the relative uplift rate is highest in the areas where Hakkâri and Şirvan Segments are pure thrust faults (0.4 mm year–1), and lower in the transfer zone (0.2 to 0.4 mm year–1) between the segments. As a result of this study, it is concluded that the main deformation structures controlling the topography in the region are not only thrust faults, but also structures that develop in the area of transfer zone.
Anahtar Kelime: Bitlis-Zagros Fold-Thrust Belt geomorphic index relative uplift rate topographic evolution neotectonic activities

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B et al. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine 148 (5-6): 692–725. https://doi.org/10.1017/ S001675681100046X
  • Aktürk A (1985). Çatak-Narlı (Van) yöresinin stratigrafisi ve tektoniği. PhD, Fırat University, Elazığ, Turkey (in Turkish).
  • Al-Lazki AI, Sandvol E, Seber D, Barazangi M, Turkelli N et al. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African Plates. Geophysical Journal International 158: 1024–1040. https://doi. org/10.1111/j.1365-246X.2004.02355.x
  • Allen M, Jackson JA, Walker R (2004). Late Cenozoic reorganization of the Arabia– Eurasia collision and the comparison of short- term and long-term deformation rates. Tectonics 23 (2): TC2008. https://doi.org/10.1029/2003TC001530
  • Allen MB, Kheirkhah M, Emami MH, Jones SJ (2011). Right-lateral shear across Iran and kinematic change in the Arabia–Eurasia collision zone. Geophysical Journal International 184 (2): 555- 574. https://doi.org/10.1111/j.1365-246X.2010.04874.x
  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997). The evolution of the Altiplano-Puna plateau in the Central Andes. Annual Review of Earth and Planetary Sciences 25: 139–174. https://doi.org/10.1146/annurev.earth.25.1.139
  • Andreani L, Gloaguen R (2016). Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): Implications for the North American-Caribbean-Cocos plate boundary. Earth Surface Dynamics 4: 71–102. https://doi.org/10.5194/esurf-4-71-2016
  • Azor A, Keller EA, Yeats RS (2002). Geomorphic indicators of actiand fold growth: South Mountain-Oak Ridge anticline, Andntura basin, southern California. Geological Society of America Bulletin 114 (6): 745-753. https://doi.org/10.1130/001 67606(2002)114%3C0745:GIOAFG%3E2.0.CO;2
  • Bahrami S (2013). Tectonic controls on the morphometry of alluvial fans around Danehkhoshk anticline, Zagros, Iran. Geomorphology 180–181: 217–230. https://doi.org/10.1016/j. geomorph.2012.10.012
  • Bakkal B, Çinku MC, Heller F (2019). Paleomagnetic results along the Bitlis-Zagros suture zone in SE Anatolia, Turkey: Implications for the activation of the Dead Sea Fault Zone. Journal of Asian Earth Sciences 172: 14-29. https://doi.org/10.1016/j. jseaes.2018.08.026
  • Barka AA, Reilinger R (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geofisica 40 (3): 587-610. https:// doi.org/10.4401/ag-3892
  • Baulig H (1926). Sur une méthode d’analyse altimétrique appliquée à la Bretagne. Bulletin de l’Association de Géographes Français 10: 7–9.
  • Berberian M (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241: 193–224. https://doi. org/10.1016/0040-1951(94)00185-C
  • Bishop P (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms 32: 329–365. https://doi.org/10.1002/esp.1493
  • Blanc EJP, Allen MB, Inger S, Hassani H (2003). Structural styles in the Zagros Simple Folded Zone, Iran. Journal of the Geological Society 160: 401–412. https://doi.org/10.1144/0016-764902- 110
  • Blanckenburg VF (2005). The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters 237: 462– 479. https://doi.org/10.1016/j.epsl.2005.06.030
  • Bretis B, Bartl N, Grasemann B (2011). Lateral fold growth and linkage in the Zagros fold and thrust belt (Kurdistan, NE Iraq). Basin Research 23: 615–630. https://doi.org/10.1111/j.1365- 2117.2011.00506.x
  • Bull WB (1977). Tectonic Geomorphology of the Mojave Desert, California, US, Geological Survey Contract Report 14-08-001- G-394, Office of Earthquakes, Volcanoes, and Engineering, pp.188.
  • Bull WB, McFadden LD (1977). Tectonic geomorphology north and south of the Garlock fault, California, Proceedings of the 8th Annual Geomorphology Symposium, Doehring, D.O., (Ed), State University of New York, Binghamton, 115–138.
  • Burbank DW, Anderson RS (2012). Tectonic Geomorphology, second ed. Wiley-Blackwell.
  • Copley A, Jackson J (2006). Active tectonics of the Turkish- Iranian Plateau. Tectonics 25: TC6006. https://doi. org/10.1029/2005TC001906
  • Csontos L, Sasvári Á, Pocsai T, Kósa L, Salae AT et al. (2012). Structural evolution of the northwestern Zagros, Kurdistan Region, Iraq: Implications on oil migration. GeoArabia 17 (2): 81–116. https://doi.org/10.2113/geoarabia170281
  • Cyr DE, Granger AJ, Olivetti V, Molin P (2010). Quantifying rock uplift rates using channel steepness and cosmogenic nuclide- determined erosion rates: examples from northern and southern Italy. Lithosphere 2: 188-198. https://doi.org/10.1130/L96.1
  • Dahlstrom CDA (1970). Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology 18 (3): 332–406. https://doi.org/10.35767/ gscpgbull.18.3.332
  • Davis WM (1902). Base-level, grade, and peneplain, The Journal of Geology 10 (1): 77-111.
  • De Righi MR, Cortesini A (1964). Gravity tectonics in foothills structure belt of southeast Turkey. American Association of Petroleum Geologists 48 (12): 1911-1937. https://doi. org/10.1306/A66334D8-16C0-11D7-8645000102C1865D
  • Delcaillau B, Carozza JM, Laville E (2006). Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India. Geomorphology 76: 241-256. https://doi.org/10.1016/j.geomorph.2005.11.005
  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Lepichon X et al. (1986). Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123 (1–4): 241–315. https://doi.org/10.1016/0040-1951(86)90199-X
  • Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973). Plate tectonics and evolution of alpine system. Geological Society of American Bulletin 84 (10): 3137–3180. https://doi.org/10.1130/0016- 7606(1973)84b3137:ptateo>2.0.co;2
  • Dewey JF, Hempton MR, Kidd WSF, Şaroğlu F, Şengör AMC (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone, in: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geological Society, London, Special Publications: 19: 1-36 (Robert M. Shackleton volume). https://doi.org/10.1144/GSL.SP.1986.019.01.01
  • DiBiase R, Whipple KX, Heimsath AM, Ouimet WB (2010). Landscape form and millennial erosion rates in the San Gabriel Mountains. Earth and Planetary Science Letters 289: 134-144. https://doi.org/10.1016/j.epsl.2009.10.036
  • Doğan U (2005). Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (Between Bismil– Batman, Turkey). Geomorphology, 71: 389-401. https://doi. org/10.1016/j.geomorph.2005.04.010
  • Doğan U, Koçyiğit A, Gökkaya E (2017). Development of the Kembos and Eynif structural poljes: Morphotectonic evolution of the Upper Manavgat River basin, central Taurides, Turkey. Geomorphology 278: 105-120. https://doi.org/10.1016/j. geomorph.2016.10.030
  • Doski JAH, McClay K (2022) Tectono-stratigraphic evolution, regional structure and fracture patterns of the Zagros fold- thrust belt in the Duhok region, Kurdistan, northern Iraq. Tectonophysics 838: 229506. https://doi.org/10.1016/j. tecto.2022.229506
  • Duman TY, Robertson AH, Elmacı H, Kara M (2017). Palaeozoic- Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwestern most corner of the Arabian continent. Geodinamica Acta 29 (1): 103-138. https://doi.org/10.1080/09853111.2017.1323428
  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş et al. (2013). Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale, General Directorate of Mineral Research and Exploration, Ankara.
  • Erol O (2001). Geomorphological evolution of some karstic terrains in the Southwestern Turkey. Present state and future trends of Karst studies. Proceeding of the 6th International Symposium and Field Seminar, Turkey, pp. 473-484.
  • Faulds JE, Varga RJ (1998). The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. Geological Society of America Special Paper 323, https://doi.org/10.1130/0-8137-2323-X.1
  • Font M, Amorese D, Lagarde JL (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology 119: 172-180. https://doi.org/10.1016/j.geomorph.2010.03.017
  • Giaconia F, Rea GB, Martínez-Martínez JM, Azañón JM, Pérez- Peña JV et al. (2012). Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology 145–146: 90-106. https://doi.org/10.1016/j. geomorph.2011.12.043
  • Giamboni M, Wetzel A, Schneider B (2005). Geomorphic response of alluvial rivers to active tectonics: Example from the southern Rhine graben. Austrian Journal of Earth Sciences. 97: 24– 37.
  • Gordon JE, Thompson DBA, Haynes VM, McDonald R, Brazier V (1998). Environmental sensitivity and conservation management in the Cairngorm Mountains, Scotland. Ambio 27 (4): 335–344.
  • Granger DE, Riebe CS (2007). Cosmogenic nuclides in weathering and erosion. In: Holland HD, Turekian KK (eds) Surface and ground water, weathering, and soils. Treatise on Geochemistry 5:1–43. https://doi.org/10.1016/B978-0-08-095975-7.00514-3
  • Grohmann CH (2004). Morphometric analysis in geographic information systems: Applications of free software GRASS and R. Computers & Geosciences 30 (9-10): 1055-1067. https://doi. org/10.1016/j.cageo.2004.08.002
  • Hall R (1976). Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey. Geological Society of America Bulletin 87 (7): 1078-1088. https://doi. org/10.1130/0016-7606(1976)87<1078:OEATEO>2.0.CO;2
  • Harzhauser M, Kroh A, Mandic O, Piller EW, Gohlich U et al. (2007). Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger- A Journal of Comparative Zoology 246 (4): 241–256. https://doi.org/10.1016/j.jcz.2007.05.001
  • Hempton MR (1984). Result of detailed mapping near lake Hazar (eastern Taurus Mountains), in: Tekeli, O., Göncüoğlu, M.C. (Eds.), Geology of the Taurus Belt. Int Symp Proc of Bulletin of the Mineral Research and Exploration, Ankara, pp. 223–228.
  • Hempton MR (1985). Structure and deformation history of the Bitlis suture near Lake Hazar, Southeastern Turkey. Geological Society of America Bulletin 96 (2): 233–243. https://doi. org/10.1130/0016-7606
  • Hempton MR (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics 6 (6): 687-705. https://doi.org/10.1029/TC006i006p00687
  • Hergarten S, Robl J, Stüwe K (2014). Extracting topographic swath profiles across curved geomorphic features. Earth Surface Dynamics 2 (1): 97-104. https://doi.org/10.5194/ esurf-2-97-2014, 2014
  • Hessami K, Pantosti D, Tabassi H, Shabanian E, Abbassi M et al. (2003). Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics 46 (5): 903–915. https://doi.org/10.4401/ag-3461
  • Hessami K, Nilforoushan F, Talbot CJ (2006). Active deformation within the Zagros Mountains deduced from GPS measurements. Journal of the Geological Society 163: 143-148. https://doi.org/10.1144/0016-764905-031
  • Hobson RD (1972). Surface roughness in topography: quantitative approach, in Chorley R, Methuen J (Eds.), Spatial analysis in geomorphology, London, 225–245.
  • Homke S, Vergés J, Garcés M, Emami H, Karpuz R (2004). Magnetostratigraphy of Miocene-Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan Province, Iran). Earth and Planetary Science Letters 225 (3-4): 397–410. https://doi.org/10.1016/j.epsl.2004.07.002
  • Jackson JA, Van Dissen R, Berryman K (1998). Tilting of active folds and faults in the Manawatu region, New Zealand: evidence from surface drainage patterns, New Zealand Journal of Geology and Geophysics 41 (4): 377–385. https://doi.org/10.10 80/00288306.1998.9514817
  • Jassim SZ, Goff JC (2006). Geology of Iraq, first ed., Published by Dolin, Prague and Moravian Museum, Brno, Printed in the Czech Republic.
  • Karakhanian AS, Trifonov VG, Philip H, Avagyan A, Hessami K et al. (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics 380 (3-4): 189- 219. https://doi.org/10.1016/j.tecto.2003.09.025
  • Keller EA (1986). Investigation of Active Tectonics: Use of Surficial Earth Processes, in: Active Tectonics, Studies in Geophysics, Chapter 8, National Academy Press, Washington DC, pp.136- 147.
  • Keller EA, Pinter N (2002). Active Tectonics. Second ed. Prentice Hall, Upper Saddle Rivers, pp. 363.
  • Keller EA, Seaver DB, Laduzinsky DL, Johnson DL, Ku TL (2000). Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, southern San Joaquin Valley, California, Geology Society America Bulletin 112 (1): 86–97. https://doi.org/10.1130/0016-7606(2000)112.
  • Kelling G, Gökçen SL, Floyd PA, Gökçen N (1987). Neogene tectonics and plate convergence in the eastern Mediterranean: New data from southern Turkey. Geology 15 (5): 425–429. https://doi. org/10.1130/0091-7613(1987)15<425:NTAPCI>2.0.CO;2
  • Ketin İ (1966). Cambrian outcrops in southeastern Turkey and their comparison wiıth the Cambrian of East Iran. Bulletin of The Mineral Research and Exploration 66: 75-87.
  • King G, Yielding G 1984. The evolution of a thrust fault system: processes of rupture initiation, propagation and termination in the 1980 El Asnam (Algeria) earthquake. Geophysical Journal of the Royal Astronomical Society 77 (3): 915-933. https://doi. org/10.1111/j.1365-246X.1984.tb02229.x
  • Kirby E, Whipple K (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology 29 (5): 415-418. https:// doi.org/10.1130/0091-7613.
  • Kirby E, Whipple K (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009
  • Koçyiğit A, Yılmaz A, Adamia S, Kuloshvili S (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14 (1-3): 177–195. https://doi.org/10.1016/ S0985-3111(00)01064-0
  • Koshnaw RI, Horton BK, Stockli DF, Barber DE, Tamar-Agha MY et al. (2017). Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics 694: 332–355. https://doi. org/10.1016/j.tecto.2016.11.016
  • Marr JC, Swenson JB, Paola C, Voller VR (2000). A two-diffusion model of fluvial stratigraphy in closed depositional basins. Basin Research 12 (3-4): 381-398. https://doi.org/10.1046/ j.1365-2117.2000.00134.x
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research Atmospheres 105 (B3): 5695-5719. https://doi.org/10.1029/1999JB900351
  • McClusky SM, Reillinger R, Mahmoud S, Ben Sari D, Tealeb A (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International 155 (1): 126–138. https://doi.org/10.1046/j.1365-246X.2003.02023.x
  • McQuarrie N (2004). Crustal scale geometry of the Zagros fold- thrust belt, Iran. Journal of Structural Geology 26 (3): 519–535. https://doi.org/10.1016/j.jsg.2003.08.009
  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Goephysical Research Letters 30(20): 1-6. https://doi. org/10.1029/2003GL017992
  • Molinaro M, Leturmy P, Guezou JC, Frizon de Lamotte D, Eshraghi SA (2005a). The structure and kinematics of the south- eastern Zagros fold-thrust belt; Iran: from thin-skinned to thick-skinned tectonics. Tectonics 24: 1-19. https://doi. org/10.1029/2004TC001633
  • Molinaro M, Zeyen H, Laurencin X (2005b). Lithospheric structure underneath the SE Zagros Mountains, Iran: recent slab break-off? Terra Nova 17 (1): 1–6. https://doi.org/10.1111/j.1365-3121.2004.00575.x
  • Monod O, Kuzucuoğlu C, Okay A (2006). A Miocene palaeovalley network in the Western Taurus (Turkey). Turkish Journal of Earth Sciences 15 (1): 1-23.
  • Montgomery DR, Abbe TB, Buffington JM, Peterson NP, Schmidt KM et al. (1996). Distribution of bedrock and alluvial channels in forested mountain drainage basins. Nature 381: 587-589.
  • Mouthereau F, Lacombe O, Vergés J (2012). Building the Zagros collisional orogen: Timing, strain distribution and the Dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535: 27–60. https://doi.org/10.1016/j.tecto.2012.01.022
  • Mouthereau F, Tensi J, Bellahsen N, Lacombe O, De Boisgrollier T et al. (2007). Tertiary sequence of deformation in a thin-skinned/ thick-skinned collision belt: The Zagros Folded Belt (Fars, Iran). Tectonics 26: TC5006. https://doi.org/10.1029/2007TC002098
  • Nicoll K (2010). Landscape development within a young collision zone: implications for post-Tethyan evolution of the Upper Tigris River system in southeastern Turkey. International Geolology Review 52 (4-6): 404-422. https://doi. org/10.1080/00206810902951072
  • Okay A, Zattin M, Cavazza W (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38 (1): 35-38. https://doi.org/10.1130/G30234.1
  • Oral MB, Reilinger RE, Toksoz MN, King RW, Barka AA et al. (1995). Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS, Transactions, American Geophysical Union 76 (2): 9–11. https://doi.org/10.1029/ EO076i002p00009-01
  • Ouimet WB, Whipple KX, Granger DE (2009). Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37 (7): 579–582. https://doi. org/10.1130/G30013A.1
  • Öztürk Y, Zorer H (2020). Tectono-geomorphological shapes in Sinebel Gorge Valley and surrounding (Pervari/Siirt). International Journal of Geography and Geography Education 41: 367-395. https://doi.org/10.32003/igge.653711
  • Pérez-Peña JV, Azañón JM, Azor A (2009a). CalHypso: An ArcGIS extension to calculate hypsometric curands and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers & Geosciences 35 (6): 1214-1223. https://doi. org/10.1016/j.cageo.2008.06.006
  • Pérez-Peña JV, Azañón JM, Booth-Rea G, Azor A, Delgado J (2009b). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. Journal of Geophysical Research 114 (F2), F02018. https://doi. org/10.1029/2008JF001092
  • Pérez-Peña JV, Azañón JM, Azor A, Booth-Rea G, Galve JP et al. (2015). Quaternary landscape evolution driven by slab- pull mechanisms in the Granada Basin (Central Betics). Tectonophysics 663: 5–18. https://doi.org/10.1016/j. geomorph.2008.10.018
  • Perinçek D (1990). Stratigraphy of the Hakkâri province southeast Turkey. Bulletin of TAPG 2(1): 21-68 (in Turkish).
  • Perinçek D, Özkaya I (1981). Arabistan levhası kuzey kenarının tektonik evrimi. Earth Science 7 (8): 91-102 (in Turkish).
  • Philip H, Avagyan A, Karakhanian A, Ritz JF, Rebai S (2001). Estimating slip rates and recurrence intervals for strong earthquakes along an intracontinental fault: example of the Pambak–Sevan–Sunik fault (Armenia). Tectonophysics 343 (3– 4): 205-232. https://doi.org/10.1016/S0040-1951(01)00258-X
  • Ramsey LA, Walker RT, Jackson J (2008). Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran. Basin Researchs 20 (1): 23– 48. https://doi.org/10.1111/ j.1365-2117.2007.00342.x
  • Reilinger RE, McClusky S, Oral MB, King W, Toksoz MN (1997). Global positioning, system measurements of present-day crustal movements in the Arabian–Africa–Eurasia plate collision zone. Journal of Geophyical Research 102 (B5): 9983– 9999. https://doi.org/10.1029/96JB03736
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in the Africa–Arabia, Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research-Solid Earth 111: (B05411) https://doi. org/10.1029/2005JB004051
  • Rick Allmandinger’s Stuff: https://rickallmendinger.net. Robertson AHF (2000). Mesozoic-Tertiary tectonic-sedimentary evolution of a South Tethyan Oceanic Basin and its margins in Southern Turkey. Geological Society London Special Publications 173 (1): 97-138. https://doi.org/10.1144/GSL. SP.2000.173.01.05
  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87 (1–4): 289-343. https:// doi.org/10.1016/0031-0182(91)90140-M
  • Safran EB, Bierman PR, Aalto R, Dunne T, Whipple KX et al. (2005). Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms 30 (8): 1007-1024. https://doi.org/10.1002/esp.1259
  • Sağlam Selçuk A (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology 270: 9-21. https://doi.org/10.1016/j.geomorph.2016.07.009
  • Sançar T (2021). Morphometric investigations on the NW Bitlis- Zagros Mountain range (SE Turkey): Implications for the internal deformation of the western Turkish-Iranian Plateau. Journal of Asian Earth Sciences 216: 104751. https://doi. org/10.1016/j.jseaes.2021.104751
  • Schumm SA (1993). River response to baselevel change: implications for sequence stratigraphy. The Journal of Geology 101 (2): 279–294.
  • Seyitoğlu G, Esat K, Kaypak B, Toori M, Aktuğ B (2019). Internal deformation of Turkish–Iranian plateau in the Hinterland of Bitlis–Zagros Suture Zone. In: Developments in Structural Geology and Tectonics (Vol. 3, pp. 161-244). Elsevier.
  • Shahzad F, Gloaguen R (2011). Tecdem: A MATLAB Based Toolbox For Tectonic Geomorphology, Part 1: Drainage Network Preprocessing And Stream Profile Analysis. Computers & Geosciences 37 (2): 250–260. https://doi.org/10.1016/j. cageo.2010.06.008
  • Siddiqui S, Castaldini D, Soldati M (2017). DEM-based drainage network analysis using steepness and Hack SL indices to identify areas of differential uplift in Emilia–Romagna Apennines, northern Italy. Arabian Journal of Geosciences 10 (3). https://doi.org/10.1007/s12517-016-2795-x
  • Sissakian VK (1997). Geological Map of Arbeel and Mahabad Quadrangles Sheets NJ-38- 14 and NJ-38-15, Scale 1:250.000.
  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geology Society American Bulletin 112 (8): 1250-1263. https://doi.org/10.11300016-7606
  • Strahler AN (1952). Hypsometric (area-altitude curve) Analysis of Erosional Topography. Geology Society American Bulletin 63: 1117-1141. https://doi.org/10.1130/0016-7606
  • Strahler A (1957). Quantitative Analysis of Watershed Geomorphology. Transactions, American Geophysical Union 38: 913-920. https://doi.org/10.1029/TR038i006p00913
  • Stampfli GM, Borel GD (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planatery Science Letters 196 (1–2): 17–33. https://doi. org/10.1016/S0012-821X(01)00588-X
  • Strak V, Dominguez S, Petit C, Meyer B, Loget N (2011). Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling. Tectonophysics 513 (1- 4): 1-19. https://doi.org/10.1016/j.tecto.2011.10.005
  • Stolar D, Roe G, Willett S (2007). Controls on the patterns of topography and erosion rate in a critical orogen. Journal of Geophysical Research 112 (F4). https://doi. org/10.1029/2006JF000713
  • Sung QC, Chen YC (2004). Self-affinity dimensions of topography and its implications in morphotectonics: an example from Taiwan. Geomorphology 62 (3–4): 181-198. https://doi. org/10.1016/j.geomorph.2004.02.012
  • Şaroğlu F, Emre Ö, Boray A (1987). Türkiye’nin diri fayları ve depremsellikleri. MTA. Report No: 5216.
  • Şaroğlu F, Güner Y (1981). Doğu Anadolu’nun jeomorfolojik gelişimine etki eden öğeler: Jeomorfoloji, tektonik, volkanizma ilişkileri. Bulletin of TJK 24: 39-50, (in Turkish with an abstract in English).
  • Şengör AMC (1979). Mid-Mesozoic closure of Permo–Triassic Tethys and its implications, Nature 279: 590–593.
  • Şengör AMC (2005). Repeated Independent Discovery and ‘Objective Evidence’in Science: An Example from Geology. In Turkish Studies in the History and Philosophy of Science (pp. 113-135). Springer, Dordrecht.
  • Şengör AMC, Kidd WSF (1979). Postcollisional Tectonics of the Turkish Iranian Plateau and a Comparison with Tibet. Tectonophysics 55: 361-376.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75 (3-4): 181-190.
  • Şengör AMC, Görür N (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle K. and Christie-Blick N., Eds., Strike-Slip Deformation, Basin Formation and Sedimentation, Special Publications, SEPM Society for Sedimentary Geology, Tulsa, 37: 227-264.
  • Şengör AMC, Natal’in BA (2004). Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags. Developments in Precambrian Geology. 13: 675-726. https://doi.org/10.1016/S0166-2635(04)13021-1
  • Şengör AMC, Yılmaz Y, Özeren S, Zor E, Genç T (2003). Doğu Anadolu litosfer mekaniğine yeni bir yaklaşım. İTÜ Avrasya Yer Bilimi Enstitüsü. Kuvaterner Çalıştayı IV, 101- 110 (in Turkish).
  • Talebian M, Jackson J (2002). Offset on the main recent fault of NW Iran and implication for the Late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International 150 (2): 422-439. https://doi.org/10.1046/j.1365- 246X.2002.01711.x
  • Tarolli P (2014). High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 216: 295–312. https://doi.org/10.1016/j. geomorph.2014.03.008
  • Telbisz T, Kovács G, Székely B, Szabó J (2013). Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool. Zeitschrift für Geomorphologie 57 (4): 485-513. https://doi.org/10.1127/0372-8854/2013/0110
  • Usta SG (2015). Morphometric analysis of active tectonic imprints at the junction of Büyük Menderes and Bozdoğan grabens, Western Anatolia. PhD, Middle East Technical University, Ankara, Turkey (in Turkish).
  • Vanlaningham S, Meigs A, Goldfinger C (2006). The effects of rock uplift and rock resistance on river morphology in a subduction zone forearc, Oregon, USA. Earth Surface Processes and Landforms 31 (10): 1257-1279. https://doi.org/10.1002/ esp.1326
  • Vergés J, Saura E, Casciello E, Fernàndez M, Villaseñor A et al. (2011). Crustal-scale cross-sections across the NW Zagros belt: Implications for the Arabian margin reconstruction. Geological Magazine 148 (5-6): 739–761. https://doi. org/10.1017/S001675681100033
  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi M, Vigny C et al. (2004). Contemporary crustal deformation and plate kinematics in middle east constrained by GPS measurements in Iran and Northern Oman. Geophysical Journal International 157 (1): 381-398. https://doi.org/10.1111/j.1365-246X.2004.02222.x
  • Whipple KX (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences 32: 151-185. https://doi.org/10.1146annurev. earth-.32.101802.120356
  • Whipple KX (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience 2 (2): 97–104. https://doi.org/10.1038/ngeo413
  • Whipple KX, Tucker GE (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research 104 (B8): 17661–17674. https://doi.org/10.1029/1999JB900120
  • Whittaker AC (2012). How do landscapes record tectonics and climate? Lithosphere 4 (2): 160–164. https://doi.org/10.1130/ RF.L003.1
  • Willett SD (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research 104 (B12): 28,957–28,981. https://doi. org/10.1029/1999JB900248
  • Wilson JT (1966). Did the Atlantic close and then re-open? Nature 211: 676–681. https://doi.org/10.1038/211676a0
  • Wobus C, Whipple KX, Kirby E, Snyder N, Johnson J et al. (2006). Tectonics from topography: procedures, promise, and pitfalls. In: Sean D Willett, Niels Hovius, Mark T Brandon, Donald M Fisher (Eds.) Tectonics, Climate, and Landscape Evolution. Geological Society of America. 398: 55–74. https://doi. org/10.1130/2006.2398(04)
  • Yılmaz Y (1993). New evidence and model on the evolution of the southeast Anatolian orogen. Geology Society American Bulletin 105 (2): 251-271. https://doi.org/10.1130/0016- 7606(1993)105<0251:NEAMOT>2.3.CO;2
  • Yiğitbaş E, Yılmaz Y (1996). New evidence and solution to the Maden complex controversy of the Southeast Anatolian orogenic belt (Turkey). Geologische Rundschau 85: 250–263. https://doi. org/10.1007/BF02422232
  • Zebari M, Burberry CM (2015). 4-D evolution of anticlines and implications for hydrocarbon exploration within the Zagros Fold-Thrust Belt, Kurdistan Region, Iraq. GeoArabia 20: 161– 188. https://doi.org/10.2113/geoarabia2001161
  • Zebari M, Grützner C, Navabpour P, Ustaszewski K (2019). Relative timing of uplift along the Zagros Mountain Front Flexure (Kurdistan Region of Iraq): Constrained by geomorphic indices and landscape evolution modeling. Journal Geophysical Research Solid Earth 10: 663–682. https://doi.org/10.5194/se- 10-663-2019
  • Zorer H, Öztürk Y (2021). Fluvio-karstic development of the Masiro Canyon (Pervari) and geomorphic features of its surroundings. Journal Geography 42: 49-65. http://doi.org/10.26650/ jgeog2021-825470
APA ZORER H, öztürk y, sağlam a (2023). Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. , 447 - 469. 10.55730/1300-0985.1855
Chicago ZORER HALIL,öztürk yahya,sağlam azad Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. (2023): 447 - 469. 10.55730/1300-0985.1855
MLA ZORER HALIL,öztürk yahya,sağlam azad Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. , 2023, ss.447 - 469. 10.55730/1300-0985.1855
AMA ZORER H,öztürk y,sağlam a Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. . 2023; 447 - 469. 10.55730/1300-0985.1855
Vancouver ZORER H,öztürk y,sağlam a Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. . 2023; 447 - 469. 10.55730/1300-0985.1855
IEEE ZORER H,öztürk y,sağlam a "Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey." , ss.447 - 469, 2023. 10.55730/1300-0985.1855
ISNAD ZORER, HALIL vd. "Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey". (2023), 447-469. https://doi.org/10.55730/1300-0985.1855
APA ZORER H, öztürk y, sağlam a (2023). Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. Turkish Journal of Earth Sciences, 32(4), 447 - 469. 10.55730/1300-0985.1855
Chicago ZORER HALIL,öztürk yahya,sağlam azad Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. Turkish Journal of Earth Sciences 32, no.4 (2023): 447 - 469. 10.55730/1300-0985.1855
MLA ZORER HALIL,öztürk yahya,sağlam azad Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. Turkish Journal of Earth Sciences, vol.32, no.4, 2023, ss.447 - 469. 10.55730/1300-0985.1855
AMA ZORER H,öztürk y,sağlam a Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. Turkish Journal of Earth Sciences. 2023; 32(4): 447 - 469. 10.55730/1300-0985.1855
Vancouver ZORER H,öztürk y,sağlam a Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey. Turkish Journal of Earth Sciences. 2023; 32(4): 447 - 469. 10.55730/1300-0985.1855
IEEE ZORER H,öztürk y,sağlam a "Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey." Turkish Journal of Earth Sciences, 32, ss.447 - 469, 2023. 10.55730/1300-0985.1855
ISNAD ZORER, HALIL vd. "Neotectonic and topographic evolution of the Bitlis-Zagros Fold-Thrust Belt, SE Turkey". Turkish Journal of Earth Sciences 32/4 (2023), 447-469. https://doi.org/10.55730/1300-0985.1855